![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > History of mathematics
This work counters historiographies that search for the origins of modern science within the experimental practices of Europe 's first scientific institutions, such as the Cimento. It proposes that we should look beyond the experimental rhetoric found in published works, to find that the Cimento academicians were participants in a culture of natural philosophical theorising that existed throughout Europe.
The twentieth century is the period during which the history of Greek mathematics reached its greatest acme. Indeed, it is by no means exaggerated to say that Greek mathematics represents the unique field from the wider domain of the general history of science which was included in the research agenda of so many and so distinguished scholars, from so varied scientific communities (historians of science, historians of philosophy, mathematicians, philologists, philosophers of science, archeologists etc. ), while new scholarship of the highest quality continues to be produced. This volume includes 19 classic papers on the history of Greek mathematics that were published during the entire 20th century and affected significantly the state of the art of this field. It is divided into six self-contained sections, each one with its own editor, who had the responsibility for the selection of the papers that are republished in the section, and who wrote the introduction of the section. It constitutes a kind of a Reader book which is today, one century after the first publications of Tannery, Zeuthen, Heath and the other outstanding figures of the end of the 19th and the beg- ning of 20th century, rather timely in many respects.
Originally published in 1910, Principia Mathematica led to the development of mathematical logic and computers and thus to information sciences. It became a model for modern analytic philosophy and remains an important work. In the late 1960s the Bertrand Russell Archives at McMaster University in Canada obtained Russell's papers, letters and library. These archives contained the manuscripts for the new Introduction and three Appendices that Russell added to the second edition in 1925. Also included was another manuscript, 'The Hierarchy of Propositions and Functions', which was divided up and re-used to create the final changes for the second edition. These documents provide fascinating insight, including Russell's attempts to work out the theorems in the flawed Appendix B, 'On Induction'. An extensive introduction describes the stages of the manuscript material on the way to print and analyzes the proposed changes in the context of the development of symbolic logic after 1910.
This book confronts the issue of how young people can find a way into the world of algebra. It represents multiple perspectives which include an analysis of situations in which algebra is an efficient problem-solving tool, the use of computer-based technologies, and a consideration of the historical evolution of algebra. The book emphasizes the situated nature of algebraic activity as opposed to being concerned with identifying students' conceptions in isolation from problem-solving activity.
Modern mathematical logic would not exist without the analytical tools first developed by George Boole in The Mathematical Analysis of Logic and The Laws of Thought. The influence of the Boolean school on the development of logic, always recognised but long underestimated, has recently become a major research topic. This collection is the first anthology of works on Boole. It contains two works published in 1865, the year of Boole's death, but never reprinted, as well as several classic studies of recent decades and ten original contributions appearing here for the first time. From the programme of the English Algebraic School to Boole's use of operator methods, from the problem of interpretability to that of psychologism, a full range of issues is covered. The Boole Anthology is indispensable to Boole studies and will remain so for years to come.
The larger part of Yearbook 6 of the Institute Vienna Circle constitutes the proceedings of a symposium on Alfred Tarski and his influence on and interchanges with the Vienna Circle, especially those on and with Rudolf Carnap and Kurt Goedel. It is the first time that this topic has been treated on such a scale and in such depth. Attention is mainly paid to the origins, development and subsequent role of Tarski's definition of truth. Some contributions are primarily historical, others analyze logical aspects of the concept of truth. Contributors include Anita and Saul Feferman, Jan Wolenski, Jan Tarski and Hans Sluga. Several Polish logicians contributed: Gzegorczyk, Wojcicki, Murawski and Rojszczak. The volume presents entirely new biographical material on Tarski, both from his Polish period and on his influential career in the United States: at Harvard, in Princeton, at Hunter, and at the University of California at Berkeley. The high point of the analysis involves Tarski's influence on Carnap's evolution from a narrow syntactical view of language, to the ontologically more sophisticated but more controversial semantical view. Another highlight involves the interchange between Tarski and Goedel on the connection between truth and proof and on the nature of metalanguages. The concluding part of Yearbook 6 includes documentation, book reviews and a summary of current activities of the Institute Vienna Circle. Jan Tarski introduces letters written by his father to Goedel; Paolo Parrini reports on the Vienna Circle's influence in Italy; several reviews cover recent books on logical empiricism, on Goedel, on cosmology, on holistic approaches in Germany, and on Mauthner.
In three volumes, a distinguished group of scholars from a variety of disciplines in the natural and social sciences, the humanities and the arts contribute essays in honor of Robert S. Cohen, on the occasion of his 70th birthday. The range of the essays, as well as their originality, and their critical and historical depth, pay tribute to the extraordinary scope of Professor Cohen's intellectual interests, as a scientist-philosopher and a humanist, and also to his engagement in the world of social and political practice. The essays presented in Physics, Philosophy, and the Scientific Community (Volume I of Essays in Honor of Robert S. Cohen) focus on philosophical and historical issues in contemporary physics: on the origins and conceptual foundations of quantum mechanics, on the reception and understanding of Bohr's and Einstein's work, on the emergence of quantum electrodynamics, and on some of the sharp philosophical and scientific issues that arise in current scientific practice (e.g. in superconductivity research). In addition, several essays deal with critical issues within the philosophy of science, both historical and contemporary: e.g. with Cartesian notions of mechanism in the philosophy of biology; with the language and logic of science - e.g. with new insights concerning the issue of a physicalistic' language in the arguments of Neurath, Carnap and Wittgenstein; with the notion of elementary logic'; and with rational and non-rational elements in the history of science. Two original contributions to the history of mathematics and some studies in the comparative sociology of science round off this outstanding collection.
Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 - ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De Practica Geometrie. This translation offers a reconstruction of De Practica Geometrie as the author judges Fibonacci wrote it, thereby correcting inaccuracies found in numerous modern histories. It is a high quality translation with supplemental text to explain text that has been more freely translated. A bibliography of primary and secondary resources follows the translation, completed by an index of names and special words.
Modern mechanics was forged in the seventeenth century from materials inherited from Antiquity and transformed in the period from the Middle Ages through to the sixteenth century. These materials were transmitted through a number of textual traditions and within several disciplines and practices, including ancient and medieval natural philosophy, statics, the theory and design of machines, and mathematics. This volume deals with a variety of moments in the history of mechanics when conflicts arose within one textual tradition, between different traditions, or between textual traditions and the wider world of practice. Its purpose is to show how the accommodations sometimes made in the course of these conflicts ultimately contributed to the emergence of modern mechanics. The first part of the volume is concerned with ancient mechanics and its transformations in the Middle Ages; the second part with the reappropriation of ancient mechanics and especially with the reception of the Pseudo-Aristotelian Mechanica in the Renaissance; and the third and final part, with early-modern mechanics in specific social, national, and institutional contexts.
Covering both the history of mathematics and of philosophy, Descartes's Mathematical Thought reconstructs the intellectual career of Descartes most comprehensively and originally in a global perspective including the history of early modern China and Japan. Especially, it shows what the concept of "mathesis universalis" meant before and during the period of Descartes and how it influenced the young Descartes. In fact, it was the most fundamental mathematical discipline during the seventeenth century, and for Descartes a key notion which may have led to his novel mathematics of algebraic analysis.
The manuscript gives a coherent and detailed account of the theory of series in the eighteenth and early nineteenth centuries. It provides in one place an account of many results that are generally to be found - if at all - scattered throughout the historical and textbook literature. It presents the subject from the viewpoint of the mathematicians of the period, and is careful to distinguish earlier conceptions from ones that prevail today.
This book offers a detailed history of parametric statistical inference. Covering the period between James Bernoulli and R.A. Fisher, it examines: binomial statistical inference; statistical inference by inverse probability; the central limit theorem and linear minimum variance estimation by Laplace and Gauss; error theory, skew distributions, correlation, sampling distributions; and the Fisherian Revolution. Lively biographical sketches of many of the main characters are featured throughout, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. Also examined are the roles played by DeMoivre, James Bernoulli, and Lagrange.
China's most sophisticated system of computational astronomy was created for a Mongol emperor who could neither read nor write Chinese, to celebrate victory over China after forty years of devastating war. This book explains how and why, and reconstructs the observatory and the science that made it possible. For two thousand years, a fundamental ritual of government was the emperor's "granting the seasons" to his people at the New Year by issuing an almanac containing an accurate lunisolar calendar. The high point of this tradition was the "Season-granting system" (Shou-shih li, 1280). Its treatise records detailed instructions for computing eclipses of the sun and moon and motions of the planets, based on a rich archive of observations, some ancient and some new. Sivin, the West's leading scholar of the Chinese sciences, not only recreates the project's cultural, political, bureaucratic, and personal dimensions, but translates the extensive treatise and explains every procedure in minimally technical language. The book contains many tables, illustrations, and aids to reference. It is clearly written for anyone who wants to understand the fundamental role of science in Chinese history. There is no comparable study of state science in any other early civilization.
two main (interacting) ways. They constitute that with which exploration into problems or questions is carried out. But they also constitute that which is exchanged between scholars or, in other terms, that which is shaped by one (or by some) for use by others. In these various dimensions, texts obviously depend on the means and technologies available for producing, reproducing, using and organizing writings. In this regard, the contribution of a history of text is essential in helping us approach the various historical contexts from which our sources originate. However, there is more to it. While shaping texts as texts, the practitioners of the sciences may create new textual resources that intimately relate to the research carried on. One may think, for instance, of the process of introduction of formulas in mathematical texts. This aspect opens up a wholerangeofextremelyinterestingquestionstowhichwewillreturnatalaterpoint.But practitioners of the sciences also rely on texts produced by themselves or others, which they bring into play in various ways. More generally, they make use of textual resources of every kind that is available to them, reshaping them, restricting, or enlarging them. Among these, one can think of ways of naming, syntax of statements or grammatical analysis, literary techniques, modes of shaping texts or parts of text, genres of text and so on.Inthissense, thepractitionersdependon, anddrawon, the"textualcultures"available to the social and professional groups to which they belong.
Triangular arrays are a unifying thread throughout various areas of
discrete mathematics such as number theory and combinatorics. They
can be used to sharpen a variety of mathematical skills and tools,
such as pattern recognition, conjecturing, proof-techniques, and
problem-solving techniques.
The scientific personalities of Luigi Cremona, Eugenio Beltrami, Salvatore Pincherle, Federigo Enriques, Beppo Levi, Giuseppe Vitali, Beniamino Segre and of several other mathematicians who worked in Bologna in the century 1861-1960 are examined by different authors, in some cases providing different view points. Most contributions in the volume are historical; they are reproductions of original documents or studies on an original work and its impact on later research. The achievements of other mathematicians are investigated for their present-day importance.
Based on the latest historical research, Worlds Out of Nothing is the first book to provide a course on the history of geometry in the 19th century. Topics covered in the first part of the book are projective geometry, especially the concept of duality, and non-Euclidean geometry. The book then moves on to the study of the singular points of algebraic curves (Plucker's equations) and their role in resolving a paradox in the theory of duality; to Riemann's work on differential geometry; and to Beltrami's role in successfully establishing non-Euclidean geometry as a rigorous mathematical subject. The final part of the book considers how projective geometry rose to prominence, and looks at Poincare's ideas about non-Euclidean geometry and their physical and philosophical significance. Three chapters are devoted to writing and assessing work in the history of mathematics, with examples of sample questions in the subject, advice on how to write essays, and comments on what instructors should be looking for."
This book presents the Riemann Hypothesis, connected problems, and a taste of the body of theory developed towards its solution. It is targeted at the educated non-expert. Almost all the material is accessible to any senior mathematics student, and much is accessible to anyone with some university mathematics. The appendices include a selection of original papers. This collection is not very large and encompasses only the most important milestones in the evolution of theory connected to the Riemann Hypothesis. The appendices also include some authoritative expository papers. These are the "expert witnesses whose insight into this field is both invaluable and irreplaceable.
When this book was first published, more than five years ago, I added an appendix on How the Pythagoreans discovered Proposition 11.5 of the 'Elements'. I hoped that this appendix, although different in some ways from the rest of the book, would serve to illustrate the kind of research which needs to be undertaken, if we are to acquire a new understanding of the historical development of Greek mathematics. It should perhaps be mentioned that this book is not intended to be an introduction to Greek mathematics for the general reader; its aim is to bring the problems associated with the early history of deductive science to the attention of classical scholars, and historians and philos ophers of science. I should like to conclude by thanking my translator, Mr. A. M. Ungar, who worked hard to produce something more than a mechanical translation. Much of his work was carried out during the year which I spent at Stanford as a fellow of the Center for Advanced Study in the Behavioral Sciences. This enabled me to supervise the work of transla tion as it progressed. I am happy to express my gratitude to the Center for providing me with this opportunity. Arpad Szabo NOTE ON REFERENCES The following books are frequently referred to in the notes. Unless otherwise stated, the editions are those given below. Burkert, W. Weisheit und Wissensclzaft, Studien zu Pythagoras, Philo laos und Platon, Nuremberg 1962."
Hilbert's Program was founded on a concern for the phenomenon of paradox in mathematics. To Hilbert, the paradoxes, which are at once both absurd and irresistible, revealed a deep philosophical truth: namely, that there is a discrepancy between the laws accord ing to which the mind of homo mathematicus works, and the laws governing objective mathematical fact. Mathematical epistemology is, therefore, to be seen as a struggle between a mind that naturally works in one way and a reality that works in another. Knowledge occurs when the two cooperate. Conceived in this way, there are two basic alternatives for mathematical epistemology: a skeptical position which maintains either that mind and reality seldom or never come to agreement, or that we have no very reliable way of telling when they do; and a non-skeptical position which holds that there is significant agree ment between mind and reality, and that their potential discrepan cies can be detected, avoided, and thus kept in check. Of these two, Hilbert clearly embraced the latter, and proposed a program designed to vindicate the epistemological riches represented by our natural, if non-literal, ways of thinking. Brouwer, on the other hand, opted for a position closer (in Hilbert's opinion) to that of the skeptic. Having decided that epistemological purity could come only through sacrifice, he turned his back on his classical heritage to accept a higher calling."
An understanding of developments in Arabic mathematics between the IXth and XVth century is vital to a full appreciation of the history of classical mathematics. This book draws together more than ten studies to highlight one of the major developments in Arabic mathematical thinking, provoked by the double fecondation between arithmetic and the algebra of al-Khwarizmi, which led to the foundation of diverse chapters of mathematics: polynomial algebra, combinatorial analysis, algebraic geometry, algebraic theory of numbers, diophantine analysis and numerical calculus. Thanks to epistemological analysis, and the discovery of hitherto unknown material, the author has brought these chapters into the light, proposes another periodization for classical mathematics, and questions current ideology in writing its history. Since the publication of the French version of these studies and of this book, its main results have been admitted by historians of Arabic mathematics, and integrated into their recent publications. This book is already a vital reference for anyone seeking to understand history of Arabic mathematics, and its contribution to Latin as well as to later mathematics. The English translation will be of particular value to historians and philosophers of mathematics and of science.
This volume is, as may be readily apparent, the fruit of many years' labor in archives and libraries, unearthing rare books, researching Nachlasse, and above all, systematic comparative analysis of fecund sources. The work not only demanded much time in preparation, but was also interrupted by other duties, such as time spent as a guest professor at universities abroad, which of course provided welcome opportunities to present and discuss the work, and in particular, the organizing of the 1994 International Grassmann Conference and the subsequent editing of its proceedings. If it is not possible to be precise about the amount of time spent on this work, it is possible to be precise about the date of its inception. In 1984, during research in the archive of the Ecole polytechnique, my attention was drawn to the way in which the massive rupture that took place in 1811-precipitating the change back to the synthetic method and replacing the limit method by the method of the quantites infiniment petites-significantly altered the teaching of analysis at this first modern institution of higher education, an institution originally founded as a citadel of the analytic method."
This volume in the Synthese Library Series is the result of a con- ference held at the Roskilde University, Denmark, September 16- 18, 1998. The purpose of this meeting was to shed light on some of the recent issues in probability theory and track their history; to analyze their philosophical and mathematical significance, and to analyze the role of mathematical probability theory in other sciences. Hence the conference was called Probability Theory- Philosophy! Recent History and Relations to Science. The editors would like to thank the invited speakers includ- ing in alphabetical order Prof. N.H. Bingham (BruneI Univer- sity), Prof. Berna KIlmc; (Bogazici University), Prof. Eberhard Knoblock (Techniche Universitat Berlin), Prof. J.B. Paris (Uni- versity of Manchester), Prof. T. Seidenfeld (Carnegie Mellon University), Prof. Glenn Shafer (Rutgers University) and Prof. Volodya Vovk (University of London) for contributing, in the most lucid and encouraging way, to the fulfillment of the con- ference aim. The editors are also grateful to the invited speakers for making their contributions available for publication. The conference was organized by the Danish Network on the History and Philosophy of Mathematics http://mmf.ruc.dkjmathnetj The editors would like to thank the network's organizing com- mittee consisting of Prof. Kirsti Andersen (University of Aarhus), Prof. Jesper Liitzen (University of Copenhagen), Dr. Tinne Hoff Kjeldsen (Roskilde University) and the committee's secretaries Lise Mariane Jeppesen and Jesper Thrane (Roskilde University).
The present anthology has its origin in two international conferences that were arranged at Uppsala University in August 2004: "Logicism, Intuitionism and F- malism: What has become of them?" followed by "Symposium on Constructive Mathematics." The rst conference concerned the three major programmes in the foundations of mathematics during the classical period from Frege's Begrif- schrift in 1879 to the publication of Godel' ] s two incompleteness theorems in 1931: The logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. The main purpose of the conf- ence was to assess the relevance of these foundational programmes to contemporary philosophy of mathematics. The second conference was announced as a satellite event to the rst, and was speci cally concerned with constructive mathematics-an activebranchofmathematicswheremathematicalstatements-existencestatements in particular-are interpreted in terms of what can be effectively constructed. C- structive mathematics may also be characterized as mathematics based on intuiti- isticlogicand, thus, beviewedasadirectdescendant ofBrouwer'sintuitionism. The two conferences were successful in bringing together a number of internationally renowned mathematicians and philosophers around common concerns. Once again it was con rmed that philosophers and mathematicians can work together and that real progress in the philosophy and foundations of mathematics is possible only if they do. Most of the papers in this collection originate from the two conferences, but a few additional papers of relevance to the issues discussed at the Uppsala c- ferences have been solicited especially for this volume."
We live in a space, we get about in it. We also quantify it, we think of it as having dimensions. Ever since Euclid's ancient geometry, we have thought of bodies occupying parts of this space (including our own bodies), the space of our practical orientations (our 'moving abouts'), as having three dimensions. Bodies have volume specified by measures of length, breadth and height. But how do we know that the space we live in has just these three dimensions? It is theoreti cally possible that some spaces might exist that are not correctly described by Euclidean geometry. After all, there are the non Euclidian geometries, descriptions of spaces not conforming to the axioms and theorems of Euclid's geometry. As one might expect, there is a history of philosophers' attempts to 'prove' that space is three-dimensional. The present volume surveys these attempts from Aristotle, through Leibniz and Kant, to more recent philosophy. As you will learn, the historical theories are rife with terminology, with language, already tainted by the as sumed, but by no means obvious, clarity of terms like 'dimension', 'line', 'point' and others. Prior to that language there are actions, ways of getting around in the world, building things, being interested in things, in the more specific case of dimensionality, cutting things. It is to these actions that we must eventually appeal if we are to understand how science is grounded." |
You may like...
Sanctuary - African Americans and Empire
Nicole A. Waligora-Davis
Hardcover
R2,729
Discovery Miles 27 290
|