|
Books > Philosophy > Topics in philosophy > Logic
Pondering on Problems of Argumentation is a collection of twenty
essays brought together for anyone who is interested in theoretical
issues in the study of argumentation. This collection of papers
gives the reader an insightful and balanced view of the kind of
theoretical issues argumentation theorists are currently concerned
with. Because most of the perspectives on argumentation that are en
vogue are represented, this volume provides a multidisciplinary and
even interdisciplinary outlook on the current state of affairs in
argumentation theory. Some of the contributions in Pondering on
Problems of Argumentation deal with problems of argumentation that
have been recognized as theoretical issues for a considerable time,
like the problems of fallaciousness and identifying argumentation
structures. Other contributions discuss issues that have become a
focus of attention only recently or regained their prominence, such
as the relationship between dialectic and rhetoric, and the
strategic use of the argumentative technique of dissociation. In
five separate sections papers are included dealing with
argumentative strategies, problems of norms of reasonableness and
fallaciousness, types of argument and argument schemes the
structure of argumentation and rules for advocacy and
discussion.
This book provides a collection of essays representing the state of
the art in the research into argumentation in classical antiquity.
It contains essays from leading and up and coming scholars on
figures as diverse as Parmenides, Gorgias, Seneca, and Classical
Chinese "wandering persuaders." The book includes contributions
from specialists in the history of philosophy as well as
specialists in contemporary argumentation theory, and stimulates
the dialogue between scholars studying issues relating to
argumentation theory in ancient philosophy and contemporary
argumentation theorists. Furthermore, the book sets the direction
for research into argumentation in antiquity by encouraging an
engagement with a broader range of historical figures, and closer
collaboration between contemporary concerns and the history of
philosophy.
Thetitleofthisbookmentionstheconceptsofparaconsistencyandconstr-
tive logic. However, the presented material belongs to the ?eld of
parac- sistency, not to constructive logic. At the level of
metatheory, the classical methods are used. We will consider two
concepts of negation: the ne- tion as reduction to absurdity and
the strong negation. Both concepts were developed in the setting of
constrictive logic, which explains our choice of the title of the
book. The paraconsistent logics are those, which admit - consistent
but non-trivial theories, i. e. , the logics which allow one to
make inferences in a non-trivial fashion from an inconsistent set
of hypotheses. Logics in which all inconsistent theories are
trivial are called explosive. The indicated property of
paraconsistent logics yields the possibility to apply them in
di?erent situations, where we encounter phenomena relevant (to some
extent) to the logical notion of inconsistency. Examples of these
si- ations are (see [86]): information in a computer data base;
various scienti?c theories; constitutions and other legal
documents; descriptions of ?ctional (and other non-existent)
objects; descriptions of counterfactual situations; etc. The
mentioned survey by G. Priest [86] may also be recommended for a
?rst acquaintance with paraconsistent logic. The study of the
paracons- tency phenomenon may be based on di?erent philosophical
presuppositions (see, e. g. , [87]). At this point, we emphasize
only one fundamental aspect of investigations in the ?eld of
paraconsistency. It was noted by D. Nelson in [65, p.
The notion of complexity is an important contribution of logic
to theoretical computer science and mathematics. This volume
attempts to approach complexity in a holistic way, investigating
mathematical properties of complexity hierarchies at the same time
as discussing algorithms and computational properties. A main focus
of the volume is on some of the new paradigms of computation, among
them Quantum Computing and Infinitary Computation. The papers in
the volume are tied together by an introductory article describing
abstract properties of complexity hierarchies.
This volume will be of great interest to both mathematical
logicians and theoretical computer scientists, providing them with
new insights into the various views of complexity and thus shedding
new light on their own research.
such questions for centuries (unrestricted by the capabilities of
any hard ware). The principles governing the interaction of several
processes, for example, are abstract an similar to principles
governing the cooperation of two large organisation. A detailed
rule based effective but rigid bureaucracy is very much similar to
a complex computer program handling and manipulating data. My guess
is that the principles underlying one are very much the same as
those underlying the other. I believe the day is not far away in
the future when the computer scientist will wake up one morning
with the realisation that he is actually a kind of formal
philosopher The projected number of volumes for this Handbook is
about 18. The subject has evolved and its areas have become
interrelated to such an extent that it no longer makes sense to
dedicate volumes to topics. However, the volumes do follow some
natural groupings of chapters. I would like to thank our authors
are readers for their contributions and their commitment in making
this Handbook a success. Thanks also to our publication
administrator Mrs J. Spurr for her usual dedication and excellence
and to Kluwer Academic Publishers for their continuing support for
the Handbook."
This monograph first presents a method of diagramming argument
macrostructure, synthesizing the standard circle and arrow approach
with the Toulmin model. A theoretical justification of this method
through a dialectical understanding of argument, a critical
examination of Toulmin on warrants, a thorough discussion of the
linked-convergent distinction, and an account of the proper
reconstruction of enthymemes follows.
This book collects, for the first time in one volume, contributions
honoring Professor Raymond Smullyan's work on self-reference. It
serves not only as a tribute to one of the great thinkers in logic,
but also as a celebration of self-reference in general, to be
enjoyed by all lovers of this field. Raymond Smullyan,
mathematician, philosopher, musician and inventor of logic puzzles,
made a lasting impact on the study of mathematical logic;
accordingly, this book spans the many personalities through which
Professor Smullyan operated, offering extensions and re-evaluations
of his academic work on self-reference, applying self-referential
logic to art and nature, and lastly, offering new puzzles designed
to communicate otherwise esoteric concepts in mathematical logic,
in the manner for which Professor Smullyan was so well known. This
book is suitable for students, scholars and logicians who are
interested in learning more about Raymond Smullyan's work and life.
This volume deals with the connection between thinking-and-speaking
and our form(s) of life. All contributions engage with
Wittgenstein's approach to this topic. As a whole, the volume takes
a stance against both biological and ethnological interpretations
of the notion "form of life" and seeks to promote a broadly
logico-linguistic understanding instead. The structure of this book
is threefold. Part one focuses on lines of thinking that lead from
Wittgenstein's earlier thought to the concept of form of life in
his later work. Contributions to part two examine the concrete
philosophical function of this notion as well as the ways in which
it differs from cognate concepts. Contributions to part three put
Wittgenstein's notion of form of life in perspective by relating it
to phenomenology, ordinary language philosophy and problems in
contemporary analytic philosophy.
Offers an extremely bold, far-reaching, and unsuspected thesis in
the history of philosophy: Aristotelianism was a dominant movement
of the British philosophical landscape, especially in the field of
logic, and it had a long survival. British Aristotelian doctrines
were strongly empiricist in nature, both in the theory of knowledge
and in scientific method; this character marked and influenced
further developments in British philosophy at the end of the
century, and eventually gave rise to what we now call British
empiricism, which is represented by philosophers such as John
Locke, George Berkeley and David Hume. Beyond the apparent and
explicit criticism of the old Scholastic and Aristotelian
philosophy, which has been very well recognized by the scholarship
in the twentieth century and which has contributed to the false
notion that early modern philosophy emerged as a reaction to
Aristotelianism, the present research examines the continuity, the
original developments and the impact of Aristotelian doctrines and
terminology in logic and epistemology as the background for the
rise of empiricism.Without the Aristotelian tradition, without its
doctrines, and without its conceptual elaborations, British
empiricism would never have been born. The book emphasizes that
philosophy is not defined only by the great names, but also by
minor authors, who determine the intellectual milieu from which the
canonical names emerge. It considers every single published work of
logic between the middle of the sixteenth and the end of the
seventeenth century, being acquainted with a number of surviving
manuscripts and being well-informed about the best existing
scholarship in the field. "
John Burgess is the author of a rich and creative body of work
which seeks to defend classical logic and mathematics through
counter-criticism of their nominalist, intuitionist, relevantist,
and other critics. This selection of his essays, which spans
twenty-five years, addresses key topics including nominalism,
neo-logicism, intuitionism, modal logic, analyticity, and
translation. An introduction sets the essays in context and offers
a retrospective appraisal of their aims. The volume will be of
interest to a wide range of readers across philosophy of
mathematics, logic, and philosophy of language.
This volume describes and analyzes in a systematic way the great
contributions of the philosopher Krister Segerberg to the study of
real and doxastic actions. Following an introduction which
functions as a roadmap to Segerberg's works on actions, the first
part of the book covers relations between actions, intentions and
routines, dynamic logic as a theory of action, agency, and deontic
logics built upon the logics of actions. The second section
explores belief revision and update, iterated and irrevocable
beliefs change, dynamic doxastic logic and hypertheories. Segerberg
has worked for more than thirty years to analyze the intricacies of
real and doxastic actions using formal tools - mostly modal
(dynamic) logic and its semantics. He has had such a significant
impact on modal logic that "It is hard to roam for long in modal
logic without finding Krister Segerberg's traces," as Johan van
Benthem notes in his chapter of this book.
Essays on Husserl's Logic and Philosophy of Mathematics sets out to
fill up a lacuna in the present research on Husserl by presenting a
precise account of Husserl's work in the field of logic, of the
philosophy of logic and of the philosophy of mathematics. The aim
is to provide an in-depth reconstruction and analysis of the
discussion between Husserl and his most important interlocutors,
and to clarify pivotal ideas of Husserl's by considering their
reception and elaboration by some of his disciples and followers,
such as Oskar Becker and Jacob Klein, as well as their influence on
some of the most significant logicians and mathematicians of the
past century, such as Luitzen E. J. Brouwer, Rudolf Carnap, Kurt
Goedel and Hermann Weyl. Most of the papers consider Husserl and
another scholar - e.g. Leibniz, Kant, Bolzano, Brentano, Cantor,
Frege - and trace out and contextualize lines of influence, points
of contact, and points of disagreement. Each essay is written by an
expert of the field, and the volume includes contributions both
from the analytical tradition and from the phenomenological one.
The Legacy of Aristotelian Enthymeme provides a historical-logical
analysis of Aristotle's rhetorical syllogism, the enthymeme,
through its Medieval and Renaissance interpretations. Bringing
together notions of credibility and proof, an international team of
scholars highlight the fierce debates around this form of
argumentation during two key periods for Aristotle's beliefs.
Reflecting on medieval and humanist thinkers, philosophers, poets
and theologians, this volume joins up dialectical and rhetorical
argumentation as key to the enthymeme's interpretation and shows
how the enthymeme was the source of a major interpretive conflict.
As a method for achieving the standards for proof and credibility
that persist across diverse fields of study today including the
law, politics, medicine and morality, this book takes in Latin and
Persian interpretations of the enthymeme and casts contemporary
argumentation in a new historical light.
Graham Priest presents an original exploration of philosophical
questions concerning the one and the many. He covers a wide range
of issues in metaphysics-including unity, identity, grounding,
mereology, universals, being, intentionality, and nothingness-and
deploys the techniques of paraconsistent logic in order to offer a
radically new treatment of unity. Priest brings together traditions
of Western and Asian thought that are usually kept separate in
academic philosophy: he draws on ideas from Plato, Heidegger, and
Nagarjuna, among other philosophers.
This volume is dedicated to Prof. Dag Prawitz and his outstanding
contributions to philosophical and mathematical logic. Prawitz's
eminent contributions to structural proof theory, or general proof
theory, as he calls it, and inference-based meaning theories have
been extremely influential in the development of modern proof
theory and anti-realistic semantics. In particular, Prawitz is the
main author on natural deduction in addition to Gerhard Gentzen,
who defined natural deduction in his PhD thesis published in 1934.
The book opens with an introductory paper that surveys Prawitz's
numerous contributions to proof theory and proof-theoretic
semantics and puts his work into a somewhat broader perspective,
both historically and systematically. Chapters include either
in-depth studies of certain aspects of Dag Prawitz's work or
address open research problems that are concerned with core issues
in structural proof theory and range from philosophical essays to
papers of a mathematical nature. Investigations into the necessity
of thought and the theory of grounds and computational
justifications as well as an examination of Prawitz's conception of
the validity of inferences in the light of three "dogmas of
proof-theoretic semantics" are included. More formal papers deal
with the constructive behaviour of fragments of classical logic and
fragments of the modal logic S4 among other topics. In addition,
there are chapters about inversion principles, normalization of p
roofs, and the notion of proof-theoretic harmony and other areas of
a more mathematical persuasion. Dag Prawitz also writes a chapter
in which he explains his current views on the epistemic dimension
of proofs and addresses the question why some inferences succeed in
conferring evidence on their conclusions when applied to premises
for which one already possesses evidence.
The goal of this work is twofold. First, it aims to account for
double genitive constructions in Serbian. Second, it aims to
re-evaluate the DP hypothesis in light of their existence in
Serbian. Based on evidence from the categorial status of
possessives, argumenthood in the nominal domain, the
morphosyntactic structure of nominalizations, and the assignment of
the genitive case, it is argued that DP projection must be assumed
in Serbian.
This volume contains English translations of Frege's early writings in logic and philosophy and of relevant reviews by other leading logicians. Professor Bynum has contributed a biographical essay, introduction, and extensive bibliography.
This is not quite the book I originally intended to write. Since I
first felt that linguistic application of categorial grammar
merited a system- atic presentation, I have been subject to (what
seemed to be) a series of demanding technical and foundational
distractions. Inspite of a prej- udice that mathematical elegance
was even inconsistent with linguistic practicality, repeated
illumination of the latter by the former implied a new perspective
on the field, one prompting formal innovation, and some
re-examination of methods and goals. This piece collects and
extends work over the last four years general- ising categorial
grammar to a categorial logic. The state of the art at the
beginning of that period was represented by the edited collections
Oehrle, Bach and Wheeler (1988) and Buszkowski, Marciszewski and
van Benthem (1988) (see Morrill 1991a, b), and by Moortgat (1988b).
Familiarity with such work however is not strictly necessary for an
un- derstanding of the present one, which attempts to map a
self-contained, if intensive, course with Montague Grammar as its
point of departure. This being the case, the reader should have an
understanding of logical semantics and its technicalities, such as
would be obtained from Dowty, Wall and Peters (1981), or Gamut
(1991). Some familiarity with the issues raised by contemporary
syntactic theories would also be useful, as would some familiarity
with logical deduction.
This volume gathers selected papers presented at the Fourth Asian
Workshop on Philosophical Logic, held in Beijing in October 2018.
The contributions cover a wide variety of topics in modal logic
(epistemic logic, temporal logic and dynamic logic), proof theory,
algebraic logic, game logics, and philosophical foundations of
logic. They also reflect the interdisciplinary nature of logic - a
subject that has been studied in fields as diverse as philosophy,
linguistics, mathematics, computer science and artificial
intelligence. More specifically. The book also presents the latest
developments in logic both in Asia and beyond.
A comprehensive survey of Martin-Loef's constructive type theory,
considerable parts of which have only been presented by Martin-Loef
in lecture form or as part of conference talks. Sommaruga surveys
the prehistory of type theory and its highly complex development
through eight different stages from 1970 to 1995. He also provides
a systematic presentation of the latest version of the theory, as
offered by Martin-Loef at Leiden University in Fall 1993. This
presentation gives a fuller and updated account of the system.
Earlier, brief presentations took no account of the issues related
to the type-theoretical approach to logic and the foundations of
mathematics, while here they are accorded an entire part of the
book. Readership: Comprehensive accounts of the history and
philosophy of constructive type theory and a considerable amount of
related material. Readers need a solid background in standard logic
and a first, basic acquaintance with type theory.
Mathematics and logic have been central topics of concern since the
dawn of philosophy. Since logic is the study of correct reasoning,
it is a fundamental branch of epistemology and a priority in any
philosophical system. Philosophers have focused on mathematics as a
case study for general philosophical issues and for its role in
overall knowledge- gathering. Today, philosophy of mathematics and
logic remain central disciplines in contemporary philosophy, as
evidenced by the regular appearance of articles on these topics in
the best mainstream philosophical journals; in fact, the last
decade has seen an explosion of scholarly work in these areas.
This volume covers these disciplines in a comprehensive and
accessible manner, giving the reader an overview of the major
problems, positions, and battle lines. The 26 contributed chapters
are by established experts in the field, and their articles contain
both exposition and criticism as well as substantial development of
their own positions. The essays, which are substantially
self-contained, serve both to introduce the reader to the subject
and to engage in it at its frontiers. Certain major positions are
represented by two chapters--one supportive and one critical.
The Oxford Handbook of Philosophy of Math and Logic is a
ground-breaking reference like no other in its field. It is a
central resource to those wishing to learn about the philosophy of
mathematics and the philosophy of logic, or some aspect thereof,
and to those who actively engage in the discipline, from advanced
undergraduates to professional philosophers, mathematicians, and
historians.
|
|