0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (2)
  • R250 - R500 (16)
  • R500+ (2,330)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Feature Engineering Bookcamp (Paperback): Sinan Ozdemir Feature Engineering Bookcamp (Paperback)
Sinan Ozdemir
R1,700 Discovery Miles 17 000 Ships in 9 - 17 working days

Kubernetes is an essential tool for anyone deploying and managing cloud-native applications. It lays out a complete introduction to container technologies and containerized applications along with practical tips for efficient deployment and operation. This revised edition of the bestselling Kubernetes in Action contains new coverage of the Kubernetes architecture, including the Kubernetes API, and a deep dive into managing a Kubernetes cluster in production. In Kubernetes in Action, Second Edition, you'll start with an overview of how Docker containers work with Kubernetes and move quickly to building your first cluster. You'll gradually expand your initial application, adding features and deepening your knowledge of Kubernetes architecture and operation. As you navigate this comprehensive guide, you'll also appreciate thorough coverage of high-value topics like monitoring, tuning, and scaling Kubernetes in Action, Second Edition teaches you to use Kubernetes to deploy container-based distributed applications. You'll start with an overview of how Docker containers work with Kubernetes and move quickly to building your first cluster. You'll gradually expand your initial application, adding features and deepening your knowledge of Kubernetes architecture and operation. In this revised and expanded second edition, you'll take a deep dive into the structure of a Kubernetes-based application and discover how to manage a Kubernetes cluster in production. As you navigate this comprehensive guide, you'll also appreciate thorough coverage of high-value topics like monitoring, tuning, and scaling.

Statistical Methods for Data Analysis - With Applications in Particle Physics (Paperback, 3rd ed. 2023): Luca Lista Statistical Methods for Data Analysis - With Applications in Particle Physics (Paperback, 3rd ed. 2023)
Luca Lista
R1,842 Discovery Miles 18 420 Ships in 9 - 17 working days

This third edition expands on the original material. Large portions of the text have been reviewed and clarified. More emphasis is devoted to machine learning including more modern concepts and examples. This book provides the reader with the main concepts and tools needed to perform statistical analyses of experimental data, in particular in the field of high-energy physics (HEP). It starts with an introduction to probability theory and basic statistics, mainly intended as a refresher from readers' advanced undergraduate studies, but also to help them clearly distinguish between the Frequentist and Bayesian approaches and interpretations in subsequent applications. Following, the author discusses Monte Carlo methods with emphasis on techniques like Markov Chain Monte Carlo, and the combination of measurements, introducing the best linear unbiased estimator. More advanced concepts and applications are gradually presented, including unfolding and regularization procedures, culminating in the chapter devoted to discoveries and upper limits. The reader learns through many applications in HEP where the hypothesis testing plays a major role and calculations of look-elsewhere effect are also presented. Many worked-out examples help newcomers to the field and graduate students alike understand the pitfalls involved in applying theoretical concepts to actual data.

A Data Scientist's Guide to Acquiring, Cleaning and Managing Data in R (Hardcover): S Buttrey A Data Scientist's Guide to Acquiring, Cleaning and Managing Data in R (Hardcover)
S Buttrey
R1,653 Discovery Miles 16 530 Ships in 12 - 19 working days

The only how-to guide offering a unified, systemic approach to acquiring, cleaning, and managing data in R Every experienced practitioner knows that preparing data for modeling is a painstaking, time-consuming process. Adding to the difficulty is that most modelers learn the steps involved in cleaning and managing data piecemeal, often on the fly, or they develop their own ad hoc methods. This book helps simplify their task by providing a unified, systematic approach to acquiring, modeling, manipulating, cleaning, and maintaining data in R. Starting with the very basics, data scientists Samuel E. Buttrey and Lyn R. Whitaker walk readers through the entire process. From what data looks like and what it should look like, they progress through all the steps involved in getting data ready for modeling. They describe best practices for acquiring data from numerous sources; explore key issues in data handling, including text/regular expressions, big data, parallel processing, merging, matching, and checking for duplicates; and outline highly efficient and reliable techniques for documenting data and recordkeeping, including audit trails, getting data back out of R, and more. * The only single-source guide to R data and its preparation, it describes best practices for acquiring, manipulating, cleaning, and maintaining data * Begins with the basics and walks readers through all the steps necessary to get data ready for the modeling process * Provides expert guidance on how to document the processes described so that they are reproducible * Written by seasoned professionals, it provides both introductory and advanced techniques * Features case studies with supporting data and R code, hosted on a companion website A Data Scientist's Guide to Acquiring, Cleaning and Managing Data in R is a valuable working resource/bench manual for practitioners who collect and analyze data, lab scientists and research associates of all levels of experience, and graduate-level data mining students.

Artificial Intelligence over Infrared Images for Medical Applications and Medical Image Assisted Biomarker Discovery - First... Artificial Intelligence over Infrared Images for Medical Applications and Medical Image Assisted Biomarker Discovery - First MICCAI Workshop, AIIIMA 2022, and First MICCAI Workshop, MIABID 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18 and 22, 2022, Proceedings (Paperback, 1st ed. 2022)
Siva Teja Kakileti, Maria Gabrani, Geetha Manjunath, Michal Rosen-Zvi, Nathaniel Braman, …
R1,430 Discovery Miles 14 300 Ships in 9 - 17 working days

This book constitutes the refereed proceedings of the First Workshop on Artificial Intelligence over Infrared Images for Medical Applications, AIIIMA 2022, and the First Workshop on Medical Image Assisted Biomarker Discovery, MIABID 2022, both held in conjunction with MICCAI 2022, Singapore, during September 18 and 22, 2022. For MIABID 2022, 7 papers from 10 submissions were accepted for publication. This workshop created a forum to discuss this specific sub-topic at MICCAI and promote this novel area of research among the research community that has the potential to hugely impact our society. For AIIIMA 2022, 10 papers from 15 submissions were accepted for publication. The first workshop on AIIIMA aimed to create a forum to discuss this specific sub-topic of AI over Infrared Images for Medical Applications at MICCAI and promote this novel area of research that has the potential to hugely impact our society, among the research community.

Machine Learning Algorithms - Adversarial Robustness in Signal Processing (Hardcover, 1st ed. 2022): Fuwei Li, Lifeng Lai,... Machine Learning Algorithms - Adversarial Robustness in Signal Processing (Hardcover, 1st ed. 2022)
Fuwei Li, Lifeng Lai, Shuguang Cui
R3,477 R3,287 Discovery Miles 32 870 Save R190 (5%) Ships in 9 - 17 working days

This book demonstrates the optimal adversarial attacks against several important signal processing algorithms. Through presenting the optimal attacks in wireless sensor networks, array signal processing, principal component analysis, etc, the authors reveal the robustness of the signal processing algorithms against adversarial attacks. Since data quality is crucial in signal processing, the adversary that can poison the data will be a significant threat to signal processing. Therefore, it is necessary and urgent to investigate the behavior of machine learning algorithms in signal processing under adversarial attacks. The authors in this book mainly examine the adversarial robustness of three commonly used machine learning algorithms in signal processing respectively: linear regression, LASSO-based feature selection, and principal component analysis (PCA). As to linear regression, the authors derive the optimal poisoning data sample and the optimal feature modifications, and also demonstrate the effectiveness of the attack against a wireless distributed learning system. The authors further extend the linear regression to LASSO-based feature selection and study the best strategy to mislead the learning system to select the wrong features. The authors find the optimal attack strategy by solving a bi-level optimization problem and also illustrate how this attack influences array signal processing and weather data analysis. In the end, the authors consider the adversarial robustness of the subspace learning problem. The authors examine the optimal modification strategy under the energy constraints to delude the PCA-based subspace learning algorithm. This book targets researchers working in machine learning, electronic information, and information theory as well as advanced-level students studying these subjects. R&D engineers who are working in machine learning, adversarial machine learning, robust machine learning, and technical consultants working on the security and robustness of machine learning are likely to purchase this book as a reference guide.

Real-World Machine Learning (Paperback): Henrick Brink, Joesph Richards, Mark Fetherolf Real-World Machine Learning (Paperback)
Henrick Brink, Joesph Richards, Mark Fetherolf
R1,110 Discovery Miles 11 100 Ships in 12 - 19 working days

DESCRIPTION In a world where big data is the norm and near-real-time decisions are crucial, machine learning (ML) is a critical component of the data workflow. Machine learning systems can quickly crunch massive amounts of information to offer insights and make decisions in a way that matches or even surpasses human cognitive abilities. These systems use sophisticated computational and statistical tools to build models that can recognize and visualize patterns, predict outcomes, forecast values, and make recommendations. Real-World Machine Learning is a practical guide designed to teach developers the art of ML project execution. The book introduces the day-to-day practice of machine learning and prepares readers to successfully build and deploy powerful ML systems. Using the Python language and the R statistical package, it starts with core concepts like data acquisition and modeling, classification, and regression. Then it moves through the most important ML tasks, like model validation, optimization and feature engineering. It uses real-world examples that help readers anticipate and overcome common pitfalls. Along the way, they will discover scalable and online algorithms for large and streaming data sets. Advanced readers will appreciate the in-depth discussion of enhanced ML systems through advanced data exploration and pre-processing methods. KEY FEATURES Accessible and practical introduction to machine learning Contains big-picture ideas and real-world examples Prepares reader to build and deploy powerful predictive systems Offers tips & tricks and highlights common pitfalls AUDIENCE Code examples are in Python and R. No prior machine learning experience required. ABOUT THE TECHNOLOGY Machine learning has gained prominence due to the overwhelming successes of Google, Microsoft, Amazon, LinkedIn, Facebook, and others in their use of ML. The Gartner report predicts that big data analytics will be a $25 billion market by 2017, and financial firms, marketing organizations, scientific facilities, and Silicon Valley startups are all demanding machine learning skills from their developers.

Edge Learning for Distributed Big Data Analytics - Theory, Algorithms, and System Design (Hardcover): Song Guo, Zhihao Qu Edge Learning for Distributed Big Data Analytics - Theory, Algorithms, and System Design (Hardcover)
Song Guo, Zhihao Qu
R2,048 Discovery Miles 20 480 Ships in 12 - 19 working days

Discover this multi-disciplinary and insightful work, which integrates machine learning, edge computing, and big data. Presents the basics of training machine learning models, key challenges and issues, as well as comprehensive techniques including edge learning algorithms, and system design issues. Describes architectures, frameworks, and key technologies for learning performance, security, and privacy, as well as incentive issues in training/inference at the network edge. Intended to stimulate fruitful discussions, inspire further research ideas, and inform readers from both academia and industry backgrounds. Essential reading for experienced researchers and developers, or for those who are just entering the field.

Machine Learning for Engineers - Using data to solve problems for physical systems (Paperback, 1st ed. 2021): Ryan G. McClarren Machine Learning for Engineers - Using data to solve problems for physical systems (Paperback, 1st ed. 2021)
Ryan G. McClarren
R1,436 Discovery Miles 14 360 Ships in 9 - 17 working days

All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally "analog" disciplines-mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers' ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.

Convolutional Neural Networks for Medical Applications (Paperback, 1st ed. 2023): Teik Toe Teoh Convolutional Neural Networks for Medical Applications (Paperback, 1st ed. 2023)
Teik Toe Teoh
R1,467 Discovery Miles 14 670 Ships in 10 - 15 working days

Convolutional Neural Networks for Medical Applications consists of research investigated by the author, containing state-of-the-art knowledge, authored by Dr Teoh Teik Toe, in applying Convolutional Neural Networks (CNNs) to the medical imagery domain. This book will expose researchers to various applications and techniques applied with deep learning on medical images, as well as unique techniques to enhance the performance of these networks.Through the various chapters and topics covered, this book provides knowledge about the fundamentals of deep learning to a common reader while allowing a research scholar to identify some futuristic problem areas. The topics covered include brain tumor classification, pneumonia image classification, white blood cell classification, skin cancer classification and diabetic retinopathy detection. The first chapter will begin by introducing various topics used in training CNNs to help readers with common concepts covered across the book. Each chapter begins by providing information about the disease, its implications to the affected and how the use of CNNs can help to tackle issues faced in healthcare. Readers would be exposed to various performance enhancement techniques, which have been tried and tested successfully, such as specific data augmentations and image processing techniques utilized to improve the accuracy of the models.

Learning to Quantify (Paperback, 1st ed. 2023): Andrea Esuli, Alessandro Fabris, Alejandro Moreo, Fabrizio Sebastiani Learning to Quantify (Paperback, 1st ed. 2023)
Andrea Esuli, Alessandro Fabris, Alejandro Moreo, Fabrizio Sebastiani
R1,358 Discovery Miles 13 580 Ships in 10 - 15 working days

This open access book provides an introduction and an overview of learning to quantify (a.k.a. “quantification”), i.e. the task of training estimators of class proportions in unlabeled data by means of supervised learning. In data science, learning to quantify is a task of its own related to classification yet different from it, since estimating class proportions by simply classifying all data and counting the labels assigned by the classifier is known to often return inaccurate (“biased”) class proportion estimates. The book introduces learning to quantify by looking at the supervised learning methods that can be used to perform it, at the evaluation measures and evaluation protocols that should be used for evaluating the quality of the returned predictions, at the numerous fields of human activity in which the use of quantification techniques may provide improved results with respect to the naive use of classification techniques, and at advanced topics in quantification research. The book is suitable to researchers, data scientists, or PhD students, who want to come up to speed with the state of the art in learning to quantify, but also to researchers wishing to apply data science technologies to fields of human activity (e.g., the social sciences, political science, epidemiology, market research) which focus on aggregate (“macro”) data rather than on individual (“micro”) data.

Parallel Problem Solving from Nature - PPSN XVII - 17th International Conference, PPSN 2022, Dortmund, Germany, September... Parallel Problem Solving from Nature - PPSN XVII - 17th International Conference, PPSN 2022, Dortmund, Germany, September 10-14, 2022, Proceedings, Part I (Paperback, 1st ed. 2022)
Gunter Rudolph, Anna V. Kononova, Hernan Aguirre, Pascal Kerschke, Gabriela Ochoa, …
R2,010 Discovery Miles 20 100 Ships in 9 - 17 working days

This two-volume set LNCS 13398 and LNCS 13399 constitutes the refereed proceedings of the 17th International Conference on Parallel Problem Solving from Nature, PPSN 2022, held in Dortmund, Germany, in September 2022.The 87 revised full papers were carefully reviewed and selected from numerous submissions. The conference presents a study of computing methods derived from natural models. Amorphous Computing, Artificial Life, Artificial Ant Systems, Artificial Immune Systems, Artificial Neural Networks, Cellular Automata, Evolutionary Computation, Swarm Computing, Self-Organizing Systems, Chemical Computation, Molecular Computation, Quantum Computation, Machine Learning, and Artificial Intelligence approaches using Natural Computing methods are just some of the topics covered in this field.

Clinical Image-Based Procedures - 11th Workshop, CLIP 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18,... Clinical Image-Based Procedures - 11th Workshop, CLIP 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Paperback, 1st ed. 2022)
Yufei Chen, Marius George Linguraru, Raj Shekhar, Stefan Wesarg, Marius Erdt, …
R1,594 Discovery Miles 15 940 Ships in 10 - 15 working days

This book constitutes the proceedings of the 11th Workshop on Clinical Image-Based Procedures, CLIP 2022, which was held in conjunction with MICCAI 2022, in Singapore in September 2022. The 9 full papers included in this book were carefully reviewed and selected from 12 submissions. They focus on the applicability of basic research methods in the clinical practice by creating holistic patient models as an important step towards personalized healthcare.

Representation in Machine Learning (Paperback, 1st ed. 2023): M.N. Murty, M Avinash Representation in Machine Learning (Paperback, 1st ed. 2023)
M.N. Murty, M Avinash
R1,471 Discovery Miles 14 710 Ships in 10 - 15 working days

This book provides a concise but comprehensive guide to representation, which forms the core of Machine Learning (ML). State-of-the-art practical applications involve a number of challenges for the analysis of high-dimensional data. Unfortunately, many popular ML algorithms fail to perform, in both theory and practice, when they are confronted with the huge size of the underlying data. Solutions to this problem are aptly covered in the book. In addition, the book covers a wide range of representation techniques that are important for academics and ML practitioners alike, such as Locality Sensitive Hashing (LSH), Distance Metrics and Fractional Norms, Principal Components (PCs), Random Projections and Autoencoders. Several experimental results are provided in the book to demonstrate the discussed techniques' effectiveness.

Computational and Machine Learning Tools for Archaeological Site Modeling (Paperback, 1st ed. 2022): Maria Elena Castiello Computational and Machine Learning Tools for Archaeological Site Modeling (Paperback, 1st ed. 2022)
Maria Elena Castiello
R6,319 Discovery Miles 63 190 Ships in 10 - 15 working days

This book describes a novel machine-learning based approach to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure. It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.

Machine Learning for Cyber Security - 4th International Conference, ML4CS 2022, Guangzhou, China, December 2-4, 2022,... Machine Learning for Cyber Security - 4th International Conference, ML4CS 2022, Guangzhou, China, December 2-4, 2022, Proceedings, Part II (Paperback, 1st ed. 2022)
Yuan Xu, Hongyang Yan, Huang Teng, Jun Cai, Jin Li
R2,946 Discovery Miles 29 460 Ships in 10 - 15 working days

The three-volume proceedings set LNCS 13655,13656 and 13657 constitutes the refereedproceedings of the 4th International Conference on Machine Learning for Cyber Security, ML4CS 2022, which taking place during December 2-4, 2022, held in Guangzhou, China. The 100 full papers and 46 short papers were included in these proceedings were carefully reviewed and selected from 367 submissions.

Machine Learning - The Basics (Paperback, 1st ed. 2022): Alexander Jung Machine Learning - The Basics (Paperback, 1st ed. 2022)
Alexander Jung
R1,749 Discovery Miles 17 490 Ships in 10 - 15 working days

Machine learning (ML) has become a commonplace element in our everyday lives and a standard tool for many fields of science and engineering. To make optimal use of ML, it is essential to understand its underlying principles. This book approaches ML as the computational implementation of the scientific principle. This principle consists of continuously adapting a model of a given data-generating phenomenon by minimizing some form of loss incurred by its predictions. The book trains readers to break down various ML applications and methods in terms of data, model, and loss, thus helping them to choose from the vast range of ready-made ML methods. The book's three-component approach to ML provides uniform coverage of a wide range of concepts and techniques. As a case in point, techniques for regularization, privacy-preservation as well as explainability amount to specific design choices for the model, data, and loss of a ML method.

Machine Learning Empowered Intelligent Data Center Networking - Evolution, Challenges and Opportunities (Paperback, 1st ed.... Machine Learning Empowered Intelligent Data Center Networking - Evolution, Challenges and Opportunities (Paperback, 1st ed. 2023)
Ting Wang, Bo Li, Mingsong Chen, Shui Yu
R1,472 Discovery Miles 14 720 Ships in 10 - 15 working days

An Introduction to the Machine Learning Empowered Intelligent Data Center Networking Fundamentals of Machine Learning in Data Center Networks. This book reviews the common learning paradigms that are widely used in data centernetworks, and offers an introduction to data collection and data processing in data centers. Additionally, it proposes a multi-dimensional and multi-perspective solution quality assessment system called REBEL-3S. The book offers readers a solid foundation for conducting research in the field of AI-assisted data center networks. Comprehensive Survey of AI-assisted Intelligent Data Center Networks. This book comprehensively investigates the peer-reviewed literature published in recent years. The wide range of machine learning techniques is fully reflected to allow fair comparisons. In addition, the book provides in-depth analysis and enlightening discussions on the effectiveness of AI in DCNs from various perspectives, covering flow prediction, flow classification, load balancing, resource management, energy management, routing optimization, congestion control, fault management, and network security.Provides a Broad Overview with Key Insights. This book introduces several novel intelligent networking concepts pioneered by real-world industries, such as Knowledge Defined Networks, Self-Driving Networks, Intent-driven Networks and Intent-based Networks. Moreover, it shares unique insights into the technological evolution of the fusion of artificial intelligence and data center networks, together with selected challenges and future research opportunities.

Streaming Linked Data - From Vision to Practice (Paperback, 1st ed. 2022): Riccardo Tommasini, Pieter Bonte, Fabiano Spiga,... Streaming Linked Data - From Vision to Practice (Paperback, 1st ed. 2022)
Riccardo Tommasini, Pieter Bonte, Fabiano Spiga, Emanuele Della Valle
R3,085 Discovery Miles 30 850 Ships in 10 - 15 working days

This book provides a comprehensive overview of core concepts and technological foundations for continuous engineering of Web streams. It presents various systems and applications and includes real-world examples. Last not least, it introduces the readers to RSP4J, a novel open-source project that aims to gather community efforts in software engineering and empirical research. The book starts with an introductory chapter that positions the work by explaining what motivates the design of specific techniques for processing data streams using Web technologies. Chapter 2 briefly summarizes the necessary background concepts and models needed to understand the remaining content of the book. Subsequently, chapter 3 focuses on processing RDF streams, taming data velocity in an open environment characterized by high data variety. It introduces query answering algorithms with RSP-QL and analytics functions over streaming data. Chapter 4 presents the life cycle of streaming linked data, it focuses on publishing streams on the Web as a prerequisite aspect to make data findable and accessible for applications. Chapter 5 touches on the problems of benchmarks and systems that analyze Web streams to foster technological progress. It surveys existing benchmarks and introduces guidelines that may support new practitioners in approaching the issue of continuous analytics. Finally, chapter 6 presents a list of examples and exercises that will help the reader to approach the area, get used to its practices and become confident in its technological possibilities. Overall, this book is mainly written for graduate students and researchers in Web and stream data management. It collects research results and will guide the next generation of researchers and practitioners.

An Intuitive Exploration of Artificial Intelligence - Theory and Applications of Deep Learning (Paperback, 1st ed. 2021):... An Intuitive Exploration of Artificial Intelligence - Theory and Applications of Deep Learning (Paperback, 1st ed. 2021)
Simant Dube
R1,582 Discovery Miles 15 820 Ships in 9 - 17 working days

This book develops a conceptual understanding of Artificial Intelligence (AI), Deep Learning and Machine Learning in the truest sense of the word. It is an earnest endeavor to unravel what is happening at the algorithmic level, to grasp how applications are being built and to show the long adventurous road in the future. An Intuitive Exploration of Artificial Intelligence offers insightful details on how AI works and solves problems in computer vision, natural language understanding, speech understanding, reinforcement learning and synthesis of new content. From the classic problem of recognizing cats and dogs, to building autonomous vehicles, to translating text into another language, to automatically converting speech into text and back to speech, to generating neural art, to playing games, and the author's own experience in building solutions in industry, this book is about explaining how exactly the myriad applications of AI flow out of its immense potential. The book is intended to serve as a textbook for graduate and senior-level undergraduate courses in AI. Moreover, since the book provides a strong geometrical intuition about advanced mathematical foundations of AI, practitioners and researchers will equally benefit from the book.

Evolutionare Algorithmen - Verfahren, Operatoren und Hinweise fur die Praxis (German, Hardcover, 2000 ed.): Hartmut Pohlheim Evolutionare Algorithmen - Verfahren, Operatoren und Hinweise fur die Praxis (German, Hardcover, 2000 ed.)
Hartmut Pohlheim
R2,424 Discovery Miles 24 240 Ships in 10 - 15 working days

Evolutionare Algorithmen als Optimierungsverfahren bieten vielfaltige Anwendungsmoeglichkeiten fur ingenieurtechnische Loesungen industrieller Aufgaben. Dieses Buch dient in seiner Aufbereitung als praxisnahes Nachschlagewerk. In anwendungsorientierter Art und Weise werden, von einer einfachen Struktur Evolutionarer Algorithmen ausgehend, grundlegende Bestandteile, Verfahren, Operatoren und Erweiterungen beschrieben und in ihren Anwendungsmoeglich- keiten analysiert. Durch die ausfuhrliche Darstellung mehrerer ausgewahlter Praxisbeispiele wird ein Einblick in die Anwendung Evolutionarer Algorithmen gegeben. Fur den Einsatz in der Praxis ist dies von unschatzbarem Wert. Die dem Buch beiliegende Toolbox fur Matlab bietet einen guten Einstieg in die Arbeit mit Evolutionaren Algorithmen und kann sofort fur die Loesung eigener Praxisprobleme genutzt werden. Der Benutzer erhalt neben dem notwendigen Grundwissen ein wertvolles Arbeitsmittel an die Hand.

Big Data and Machine Learning in Quantitative Investment (Hardcover): T Guida Big Data and Machine Learning in Quantitative Investment (Hardcover)
T Guida
R1,304 Discovery Miles 13 040 Ships in 12 - 19 working days

Get to know the 'why' and 'how' of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it's a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. - Gain a solid reason to use machine learning - Frame your question using financial markets laws - Know your data - Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment -- and this book shows you how.

Rhythmic Advantages in Big Data and Machine Learning (Paperback, 1st ed. 2022): Anirban Bandyopadhyay, Kanad Ray Rhythmic Advantages in Big Data and Machine Learning (Paperback, 1st ed. 2022)
Anirban Bandyopadhyay, Kanad Ray
R5,081 Discovery Miles 50 810 Ships in 10 - 15 working days

The book discusses various aspects of biophysics. It starts from the popular article on neurobiology to quantum biology and ends up with the consciousness of a human being and in the universe. The authors have covered eight nine different aspects of natural intelligence, starting from time crystal found in the chemical biology to the vibrations and the resonance of proteins. They have covered a wide spectrum of hierarchical communication among different biological systems. Most importantly, authors have taken an utmost care that even school-level students fall in love with biophysics; it is simple and more of a textbook and definitely bring the readers to a world of biology and physics like never before. Most authors are experienced academicians, and they have used lucid and simple language to make the content interesting for the readers.

AI and IoT for Smart City Applications (Paperback, 1st ed. 2022): Vincenzo Piuri, Rabindra Nath Shaw, Ankush Ghosh, Rabiul Islam AI and IoT for Smart City Applications (Paperback, 1st ed. 2022)
Vincenzo Piuri, Rabindra Nath Shaw, Ankush Ghosh, Rabiul Islam
R5,073 Discovery Miles 50 730 Ships in 10 - 15 working days

This book provides a valuable combination of relevant research works on developing smart city ecosystem from the artificial intelligence (AI) and Internet of things (IoT) perspective. The technical research works presented here are focused on a number of aspects of smart cities: smart mobility, smart living, smart environment, smart citizens, smart government, and smart waste management systems as well as related technologies and concepts. This edited book offers critical insight to the key underlying research themes within smart cities, highlighting the limitations of current developments and potential future directions.

Artificial Intelligence in Medical Sciences and Psychology - With Application of Machine Language, Computer Vision, and NLP... Artificial Intelligence in Medical Sciences and Psychology - With Application of Machine Language, Computer Vision, and NLP Techniques (Paperback, 1st ed.)
Tshepo Chris Nokeri
R1,260 R1,040 Discovery Miles 10 400 Save R220 (17%) Ships in 10 - 15 working days

Get started with artificial intelligence for medical sciences and psychology. This book will help healthcare professionals and technologists solve problems using machine learning methods, computer vision, and natural language processing (NLP) techniques. The book covers ways to use neural networks to classify patients with diseases. You will know how to apply computer vision techniques and convolutional neural networks (CNNs) to segment diseases such as cancer (e.g., skin, breast, and brain cancer) and pneumonia. The hidden Markov decision making process is presented to help you identify hidden states of time-dependent data. In addition, it shows how NLP techniques are used in medical records classification. This book is suitable for experienced practitioners in varying medical specialties (neurology, virology, radiology, oncology, and more) who want to learn Python programming to help them work efficiently. It is also intended for data scientists, machine learning engineers, medical students, and researchers. What You Will Learn Apply artificial neural networks when modelling medical data Know the standard method for Markov decision making and medical data simulation Understand survival analysis methods for investigating data from a clinical trial Understand medical record categorization Measure personality differences using psychological models Who This Book Is For Machine learning engineers and software engineers working on healthcare-related projects involving AI, including healthcare professionals interested in knowing how AI can improve their work setting

Human-in-the-Loop Machine Learning (Paperback): Robert Munro Human-in-the-Loop Machine Learning (Paperback)
Robert Munro
R1,541 Discovery Miles 15 410 Ships in 10 - 15 working days

Most machine learning systems that are deployed in the world today learn from human feedback. However, most machine learning courses focus almost exclusively on the algorithms, not the human-computer interaction part of the systems. This can leave a big knowledge gap for data scientists working in real-world machine learning, where data scientists spend more time on data management than on building algorithms. Human-in-the-Loop Machine Learning is a practical guide to optimizing the entire machine learning process, including techniques for annotation, active learning, transfer learning, and using machine learning to optimize every step of the process. Key Features * Active Learning to sample the right data for humans to annotate * Annotation strategies to provide the optimal interface for human feedback * Supervised machine learning design and query strategies to support Human-in-the-Loop systems * Advanced Adaptive Learning approaches * Real-world use cases from well-known data scientists For software developers and data scientists with some basic Machine Learning experience. About the technology "Human-in-the-Loop machine learning" refers to the need for human interaction with machine learning systems to improve human performance, machine performance, or both. Ongoing human involvement with the right interfaces expedites the efficient labeling of tricky or novel data that a machine can't process, reducing the potential for data-related errors. Robert Munro has built Annotation, Active Learning, and machine learning systems with machine learning-focused startups and with larger companies including Amazon, Google, IBM, and most major phone manufacturers. If you speak to your phone, if your car parks itself, if your music is tailored to your taste, or if your news articles are recommended for you, then there is a good chance that Robert contributed to this experience. Robert holds a PhD from Stanford focused on Human-in-the-Loop machine learning for healthcare and disaster response, and is a disaster response professional in addition to being a machine learning professional. A worked example throughout this text is classifying disaster-related messages from real disasters that Robert has helped respond to in the past.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Atlas of AI - Power, Politics, and the…
Kate Crawford Paperback R415 R370 Discovery Miles 3 700
Intelligent Computing in Control and…
G. T. Chandra Sekhar, H.S. Behera, … Hardcover R5,731 Discovery Miles 57 310
Signal Processing in Medicine and…
Iyad Obeid, Ivan Selesnick, … Hardcover R3,558 Discovery Miles 35 580
Information Support and Aircraft Flight…
Oleg Ivanovich Zavalishin, Anatoly Nikolaevich Korotonoshko, … Hardcover R4,233 Discovery Miles 42 330
In and Out of Equilibrium 2
Vladas Sidoravicius, Maria Eulalia Vares Hardcover R2,989 Discovery Miles 29 890
One of Us
Louis B Rosenberg Hardcover R393 R366 Discovery Miles 3 660
The Hitchhiker's Guide To AI - The…
Arthur Goldstuck Paperback R330 R270 Discovery Miles 2 700
WDM Systems and Networks - Modeling…
Neophytos (Neo) Antoniades, Georgios Ellinas, … Hardcover R5,681 Discovery Miles 56 810
Applied Bayesian Statistical Studies in…
M.Di Bacco, G. D'Amore, … Hardcover R3,032 Discovery Miles 30 320
Digital Dharma - How AI Can Elevate…
Deepak Chopra Paperback R430 R384 Discovery Miles 3 840

 

Partners