![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.
The book presents a collection of peer-reviewed articles from the International Conference on Advances and Applications of Artificial Intelligence and Machine Learning - ICAAAIML 2020. The book covers research in artificial intelligence, machine learning, and deep learning applications in healthcare, agriculture, business, and security. This volume contains research papers from academicians, researchers as well as students. There are also papers on core concepts of computer networks, intelligent system design and deployment, real-time systems, wireless sensor networks, sensors and sensor nodes, software engineering, and image processing. This book will be a valuable resource for students, academics, and practitioners in the industry working on AI applications.
This two-volume set, LNCS 13426 and 13427, constitutes the thoroughly refereed proceedings of the 33rd International Conference on Database and Expert Systems Applications, DEXA 2022, held in Vienna in August 2022.The 43 full papers presented together with 20 short papers in these volumes were carefully reviewed and selected from a total of 120 submissions. The papers are organized around the following topics: Big Data Management and Analytics, Consistency, Integrity, Quality of Data, Constraint Modelling and Processing, Database Federation and Integration, Interoperability, Multi-Databases, Data and Information Semantics, Data Integration, Metadata Management, and Interoperability, Data Structures and much more.
The two-volume proceedings CCIS 1613 + 1614 constitute revised selected papers from the 6th International Conference on Advances in Computing and Data Sciences, ICACDS 2022, which was held in Kurnool, India in April 2022. The total of 69 full papers presented in the proceedings was carefully reviewed and selected from 411 submissions. The papers focus on advances of next generation computing technologies in the areas of advanced computing and data sciences
The two-volume proceedings CCIS 1613 + 1614 constitute revised selected papers from the 6th International Conference on Advances in Computing and Data Sciences, ICACDS 2022, which was held in Kurnool, India in April 2022.The total of 69 full papers presented in the proceedings was carefully reviewed and selected from 411 submissions. The papers focus on advances of next generation computing technologies in the areas of advanced computing and data sciences.
This book includes a collection of peer-reviewed best selected research papers presented at the Third International Conference on Advances in Distributed Computing and Machine Learning (ICADCML 2022), organized by Department of Computer Science and Engineering, National Institute of Technology, Warangal, Telangana, India, during 15-16 January 2022. This book presents recent innovations in the field of scalable distributed systems in addition to cutting edge research in the field of Internet of Things (IoT) and blockchain in distributed environments.
This compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance - simulation and sampling, as well as experimental design and data collection - that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.
This compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance - simulation and sampling, as well as experimental design and data collection - that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.
This book presents the outcome of two-day 2nd International e-Conference on Sustainable and Innovative Solutions for Current Challenges in Engineering and Technology (ICSISCET 2020) held at Madhav Institute of Technology & Science (MITS), Gwalior, India, from December 18-19, 2020. The book extensively covers recent research in artificial intelligence (AI) that knit together nature-inspired algorithms, evolutionary computing, fuzzy systems, computational intelligence, machine learning, deep learning, etc., which is very useful while dealing with real problems due to their model-free structure, learning ability, and flexible approach. These techniques mimic human thinking and decision-making abilities to produce systems that are intelligent, efficient, cost-effective, and fast. The book provides a friendly and informative treatment of the topics which makes this book an ideal reference for both beginners and experienced researchers.
Welcome to your hands-on guide to artificial intelligence for IT operations (AIOps). This book provides in-depth coverage, including operations and technical aspects. The fundamentals of machine learning (ML) and artificial intelligence (AI) that form the core of AIOps are explained as well as the implementation of multiple AIOps uses cases using ML algorithms. The book begins with an overview of AIOps, covering its relevance and benefits in the current IT operations landscape. The authors discuss the evolution of AIOps, its architecture, technologies, AIOps challenges, and various practical use cases to efficiently implement AIOps and continuously improve it. The book provides detailed guidance on the role of AIOps in site reliability engineering (SRE) and DevOps models and explains how AIOps enables key SRE principles. The book provides ready-to-use best practices for implementing AIOps in an enterprise. Each component of AIOps and ML using Python code and templates is explained and shows how ML can be used to deliver AIOps use cases for IT operations. What You Will Learn Know what AIOps is and the technologies involved Understand AIOps relevance through use cases Understand AIOps enablement in SRE and DevOps Understand AI and ML technologies and algorithms Use algorithms to implement AIOps use cases Use best practices and processes to set up AIOps practices in an enterprise Know the fundamentals of ML and deep learning Study a hands-on use case on de-duplication in AIOps Use regression techniques for automated baselining Use anomaly detection techniques in AIOps Who This Book is For AIOps enthusiasts, monitoring and management consultants, observability engineers, site reliability engineers, infrastructure architects, cloud monitoring consultants, service management experts, DevOps architects, DevOps engineers, and DevSecOps experts
This book addresses one of the most important unsolved problems in artificial intelligence: the task of learning, in an unsupervised manner, from massive quantities of spatiotemporal visual data that are available at low cost. The book covers important scientific discoveries and findings, with a focus on the latest advances in the field. Presenting a coherent structure, the book logically connects novel mathematical formulations and efficient computational solutions for a range of unsupervised learning tasks, including visual feature matching, learning and classification, object discovery, and semantic segmentation in video. The final part of the book proposes a general strategy for visual learning over several generations of student-teacher neural networks, along with a unique view on the future of unsupervised learning in real-world contexts. Offering a fresh approach to this difficult problem, several efficient, state-of-the-art unsupervised learning algorithms are reviewed in detail, complete with an analysis of their performance on various tasks, datasets, and experimental setups. By highlighting the interconnections between these methods, many seemingly diverse problems are elegantly brought together in a unified way. Serving as an invaluable guide to the computational tools and algorithms required to tackle the exciting challenges in the field, this book is a must-read for graduate students seeking a greater understanding of unsupervised learning, as well as researchers in computer vision, machine learning, robotics, and related disciplines.
This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.
The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures. First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Based on this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware. The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.
This book provides insights into smart ways of computer log data analysis, with the goal of spotting adversarial actions. It is organized into 3 major parts with a total of 8 chapters that include a detailed view on existing solutions, as well as novel techniques that go far beyond state of the art. The first part of this book motivates the entire topic and highlights major challenges, trends and design criteria for log data analysis approaches, and further surveys and compares the state of the art. The second part of this book introduces concepts that apply character-based, rather than token-based, approaches and thus work on a more fine-grained level. Furthermore, these solutions were designed for "online use", not only forensic analysis, but also process new log lines as they arrive in an efficient single pass manner. An advanced method for time series analysis aims at detecting changes in the overall behavior profile of an observed system and spotting trends and periodicities through log analysis. The third part of this book introduces the design of the AMiner, which is an advanced open source component for log data anomaly mining. The AMiner comes with several detectors to spot new events, new parameters, new correlations, new values and unknown value combinations and can run as stand-alone solution or as sensor with connection to a SIEM solution. More advanced detectors help to determines the characteristics of variable parts of log lines, specifically the properties of numerical and categorical fields. Detailed examples throughout this book allow the reader to better understand and apply the introduced techniques with open source software. Step-by-step instructions help to get familiar with the concepts and to better comprehend their inner mechanisms. A log test data set is available as free download and enables the reader to get the system up and running in no time. This book is designed for researchers working in the field of cyber security, and specifically system monitoring, anomaly detection and intrusion detection. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, and information systems. Forward-thinking practitioners, who would benefit from becoming familiar with the advanced anomaly detection methods, will also be interested in this book.
All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally "analog" disciplines-mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers' ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.
Every day we interact with machine learning systems offering individualized predictions for our entertainment, social connections, purchases, or health. These involve several modalities of data, from sequences of clicks to text, images, and social interactions. This book introduces common principles and methods that underpin the design of personalized predictive models for a variety of settings and modalities. The book begins by revising 'traditional' machine learning models, focusing on adapting them to settings involving user data, then presents techniques based on advanced principles such as matrix factorization, deep learning, and generative modeling, and concludes with a detailed study of the consequences and risks of deploying personalized predictive systems. A series of case studies in domains ranging from e-commerce to health plus hands-on projects and code examples will give readers understanding and experience with large-scale real-world datasets and the ability to design models and systems for a wide range of applications.
Machine learning boosts the capabilities of security solutions in the modern cyber environment. However, there are also security concerns associated with machine learning models and approaches: the vulnerability of machine learning models to adversarial attacks is a fatal flaw in the artificial intelligence technologies, and the privacy of the data used in the training and testing periods is also causing increasing concern among users. This book reviews the latest research in the area, including effective applications of machine learning methods in cybersecurity solutions and the urgent security risks related to the machine learning models. The book is divided into three parts: Cyber Security Based on Machine Learning; Security in Machine Learning Methods and Systems; and Security and Privacy in Outsourced Machine Learning. Addressing hot topics in cybersecurity and written by leading researchers in the field, the book features self-contained chapters to allow readers to select topics that are relevant to their needs. It is a valuable resource for all those interested in cybersecurity and robust machine learning, including graduate students and academic and industrial researchers, wanting to gain insights into cutting-edge research topics, as well as related tools and inspiring innovations.
This contributed volume provides the state-of-the-art development on security and privacy for cyber-physical systems (CPS) and industrial Internet of Things (IIoT). More specifically, this book discusses the security challenges in CPS and IIoT systems as well as how Artificial Intelligence (AI) and Machine Learning (ML) can be used to address these challenges. Furthermore, this book proposes various defence strategies, including intelligent cyber-attack and anomaly detection algorithms for different IIoT applications. Each chapter corresponds to an important snapshot including an overview of the opportunities and challenges of realizing the AI in IIoT environments, issues related to data security, privacy and application of blockchain technology in the IIoT environment. This book also examines more advanced and specific topics in AI-based solutions developed for efficient anomaly detection in IIoT environments. Different AI/ML techniques including deep representation learning, Snapshot Ensemble Deep Neural Network (SEDNN), federated learning and multi-stage learning are discussed and analysed as well. Researchers and professionals working in computer security with an emphasis on the scientific foundations and engineering techniques for securing IIoT systems and their underlying computing and communicating systems will find this book useful as a reference. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, cyber security, and information systems. It also applies to advanced-level students studying electrical engineering and system engineering, who would benefit from the case studies.
This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field. In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs. The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.
Understand the concepts of image processing with Python 3 and create applications using Raspberry Pi 4. This book covers image processing with the latest release of Python 3, using Raspberry Pi OS and Raspberry Pi 4B with the 8 GB RAM model as the preferred computing platform. This second edition begins with the installation of Raspberry Pi OS on the latest model of Raspberry Pi and then introduces Python programming language, IDEs for Python, and digital image processing. It also illustrates the theoretical foundations of Image processing followed by advanced operations in image processing. You'll then review image processing with NumPy, and Matplotlib followed by transformations, interpolation, and measurements of images. Different types of filters such as Kernels convolution filters, low pass filters, high pass filters, and Fourier filters are discussed in a clear, methodical manner. Additionally, the book examines various image processing techniques such as Morphology, Thresholding, and Segmentation, followed by a chapter on live webcam input with OpenCV, an image processing library with Python. The book concludes with an appendix covering a new library for image processing with Python, pgmagik, followed by a few important tips and tricks relevant to RPi. What You'll Learn Get started with Raspberry Pi and Python Understand Image Processing with Pillow See how image processing is processed using Numpy and Matplotlib Use Pi camera and webcam Who This Book Is For Raspberry Pi and IoT enthusiasts, and Python and Open Source professionals
This two-volume set (CCIS 1567-1568) constitutes the refereed proceedings of the 6h International Conference on Computer Vision and Image Processing, CVIP 2021, held in Rupnagar, India, in December 2021. The 70 full papers and 20 short papers were carefully reviewed and selected from the 260 submissions. The papers present recent research on such topics as biometrics, forensics, content protection, image enhancement/super-resolution/restoration, motion and tracking, image or video retrieval, image, image/video processing for autonomous vehicles, video scene understanding, human-computer interaction, document image analysis, face, iris, emotion, sign language and gesture recognition, 3D image/video processing, action and event detection/recognition, medical image and video analysis, vision-based human GAIT analysis, remote sensing, and more.
The two-volume set LNCS 13373 and 13374 constitutes the papers of several workshops which were held in conjunction with the 21st International Conference on Image Analysis and Processing, ICIAP 2022, held in Lecce, Italy, in May 2022. The 96 revised full papers presented in the proceedings set were carefully reviewed and selected from 157 submissions. ICIAP 2022 presents the following Sixteen workshops: Volume I: GoodBrother workshop on visual intelligence for active and assisted livingParts can worth like the Whole - PART 2022Workshop on Fine Art Pattern Extraction and Recognition - FAPERWorkshop on Intelligent Systems in Human and Artificial Perception - ISHAPE 2022Artificial Intelligence and Radiomics in Computer-Aided Diagnosis - AIRCADDeep-Learning and High Performance Computing to Boost Biomedical Applications - DeepHealth Volume II: Human Behaviour Analysis for Smart City Environment Safety - HBAxSCESBinary is the new Black (and White): Recent Advances on Binary Image ProcessingArtificial Intelligence for preterm infants' healthCare - AI-careTowards a Complete Analysis of People: From Face and Body to Clothes - T-CAPArtificial Intelligence for Digital Humanities - AI4DHMedical Transformers - MEDXFLearning in Precision Livestock Farming - LPLFWorkshop on Small-Drone Surveillance, Detection and Counteraction Techniques - WOSDETCMedical Imaging Analysis For Covid-19 - MIACOVID 2022Novel Benchmarks and Approaches for Real-World Continual Learning - CL4REAL
Agricultural systems are uniquely complex systems, given that agricultural systems are parts of natural and ecological systems. Those aspects bring in a substantial degree of uncertainty in system operation. Also, impact factors, such as weather factors, are critical in agricultural systems but these factors are uncontrollable in system management. Modern agriculture has been evolving through precision agriculture beginning in the late 1980s and biotechnological innovations in the early 2000s. Precision agriculture implements site-specific crop production management by integrating agricultural mechanization and information technology in geographic information system (GIS), global navigation satellite system (GNSS), and remote sensing. Now, precision agriculture is set to evolve into smart agriculture with advanced systematization, informatization, intelligence and automation. From precision agriculture to smart agriculture, there is a substantial amount of specific control and communication problems that have been investigated and will continue to be studied. In this book, the core ideas and methods from control problems in agricultural production systems are extracted, and a system view of agricultural production is formulated for the analysis and design of management strategies to control and optimize agricultural production systems while exploiting the intrinsic feedback information-exchanging mechanisms. On this basis, the theoretical framework of agricultural cybernetics is established to predict and control the behavior of agricultural production systems through control theory.
This book opens with an introduction to the main purpose and tasks of the GIANA challenge, as well as a summary and an analysis of the results and performance obtained by the 20 participating teams. The early and accurate diagnosis of gastrointestinal diseases is critical for increasing the chances of patient survival, and efficient screening is vital for locating precursor lesions. Video colonoscopy and wireless capsule endoscopy (WCE) are the gold-standard tools for colon and intestinal tract screening, respectively. Yet these tools still present some drawbacks, such as lesion miss rate, lack of in vivo diagnosis capabilities, and perforation risk. To mitigate these, computer-aided detection/diagnosis systems can play a key role in assisting clinicians in the different stages of the exploration. This book presents the latest, state-of-the-art approaches in this field, and also tackles the clinical considerations required to efficiently deploy these systems in the exploration room. The coverage draws upon results from the Gastrointestinal Image Analysis (GIANA) Challenge, part of the EndoVis satellite events of the conferences MICCAI 2017 and 2018. Each method proposed to address the different subtasks of the challenges is detailed in a separate chapter, offering a deep insight into this topic of interest for public health. This book appeals to researchers, practitioners, and lecturers spanning both the computer vision and gastroenterology communities.
Design and develop end-to-end, production-grade computer vision projects for real-world industry problems. This book discusses computer vision algorithms and their applications using PyTorch. The book begins with the fundamentals of computer vision: convolutional neural nets, RESNET, YOLO, data augmentation, and other regularization techniques used in the industry. And then it gives you a quick overview of the PyTorch libraries used in the book. After that, it takes you through the implementation of image classification problems, object detection techniques, and transfer learning while training and running inference. The book covers image segmentation and an anomaly detection model. And it discusses the fundamentals of video processing for computer vision tasks putting images into videos. The book concludes with an explanation of the complete model building process for deep learning frameworks using optimized techniques with highlights on model AI explainability. After reading this book, you will be able to build your own computer vision projects using transfer learning and PyTorch. What You Will Learn Solve problems in computer vision with PyTorch. Implement transfer learning and perform image classification, object detection, image segmentation, and other computer vision applications Design and develop production-grade computer vision projects for real-world industry problems Interpret computer vision models and solve business problems Who This Book Is For Data scientists and machine learning engineers interested in building computer vision projects and solving business problems |
You may like...
Hamiltonian Monte Carlo Methods in…
Tshilidzi Marwala, Rendani Mbuvha, …
Paperback
R3,518
Discovery Miles 35 180
Optimum-Path Forest - Theory…
Alexandre Xavier Falcao, Joao Paulo Papa
Paperback
R3,037
Discovery Miles 30 370
Application of Machine Learning in…
Mohammad Ayoub Khan, Rijwan Khan, …
Paperback
R3,433
Discovery Miles 34 330
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha
Paperback
R3,925
Discovery Miles 39 250
Deep Learning for Sustainable…
Ramesh Poonia, Vijander Singh, …
Paperback
R2,957
Discovery Miles 29 570
Adversarial Robustness for Machine…
Pin-Yu Chen, Cho-Jui Hsieh
Paperback
R2,204
Discovery Miles 22 040
Machine Learning for Biometrics…
Partha Pratim Sarangi, Madhumita Panda, …
Paperback
R2,570
Discovery Miles 25 700
|