![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
This volume contains selected papers presented at the Second Asia-Paci c C- ference on Simulated Evolution and Learning (SEAL'98), from 24 to 27 Nov- ber 1998, in Canberra, Australia. SEAL'98 received a total of 92 submissions (67 papers for the regular sessions and 25 for the applications sessions). All papers were reviewed by three independent reviewers. After review, 62 papers were - cepted for oral presentation and 13 for poster presentation. Some of the accepted papers were selected for inclusion in this volume. SEAL'98 also featured a fully refereed special session on Evolutionary Computation in Power Engineering - ganised by Professor Kit Po Wong and Dr Loi Lei Lai. Two of the ve accepted papers are included in this volume. The papers included in these proceedings cover a wide range of topics in simulated evolution and learning, from self-adaptation to dynamic modelling, from reinforcement learning to agent systems, from evolutionary games to e- lutionary economics, and from novel theoretical results to successful applications, among others. SEAL'98 attracted 94 participants from 14 di erent countries, namely A- tralia, Belgium, Brazil, Germany, Iceland, India, Japan, South Korea, New Z- land, Portugal, Sweden, Taiwan, UK and the USA. It had three distinguished international scientists as keynote speakers, giving talks on natural computation (Hans-Paul Schwefel), reinforcement learning (Richard Sutton), and novel m- els in evolutionary design (John Gero). More information about SEAL'98 is still available at http: //www.cs.adfa.edu.au/conference/seal98/.
The field of machine learning and data mining in connection with pattern recognition enjoys growing popularity and attracts many researchers. Automatic pattern recognition systems have proven successful in many applications. The wide use of these systems depends on their ability to adapt to changing environmental conditions and to deal with new objects. This requires learning capabilities on the parts of these systems. The exceptional attraction of learning in pattern recognition lies in the specific data themselves and the different stages at which they get processed in a pattern recognition system. This results a specific branch within the field of machine learning. At the workshop, were presented machine learning approaches for image pre-processing, image segmentation, recognition and interpretation. Machine learning systems were shown on applications such as document analysis and medical image analysis. Many databases are developed that contain multimedia sources such as images, measurement protocols, and text documents. Such systems should be able to retrieve these sources by content. That requires specific retrieval and indexing strategies for images and signals. Higher quality database contents can be achieved if it were possible to mine these databases for their underlying information. Such mining techniques have to consider the specific characteristic of the image sources. The field of mining multimedia databases is just starting out. We hope that our workshop can attract many other researchers to this subject.
This second edition textbook covers a coherently organized framework for text analytics, which integrates material drawn from the intersecting topics of information retrieval, machine learning, and natural language processing. Particular importance is placed on deep learning methods. The chapters of this book span three broad categories:1. Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for text analytics such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. 2. Domain-sensitive learning and information retrieval: Chapters 8 and 9 discuss learning models in heterogeneous settings such as a combination of text with multimedia or Web links. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. 3. Natural language processing: Chapters 10 through 16 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, transformers, pre-trained language models, text summarization, information extraction, knowledge graphs, question answering, opinion mining, text segmentation, and event detection. Compared to the first edition, this second edition textbook (which targets mostly advanced level students majoring in computer science and math) has substantially more material on deep learning and natural language processing. Significant focus is placed on topics like transformers, pre-trained language models, knowledge graphs, and question answering.
This volume contains the proceedings of EuroGP 2000, the European Conf- ence on Genetic Programming, held in Edinburgh on the 15th and 16th April 2000. This event was the third in a series which started with the two European workshops: EuroGP'98, held in Paris in April 1998, and EuroGP'99, held in Gothenburg in May 1999. EuroGP 2000 was held in conjunction with EvoWo- shops 2000 (17th April) and ICES 2000 (17th-19th April). Genetic Programming (GP) is a growing branch of Evolutionary Compu- tion in which the structures in the population being evolved are computer p- grams. GP has been applied successfully to a large number of di?cult problems like automatic design, pattern recognition, robotic control, synthesis of neural networks, symbolic regression, music and picture generation, biomedical app- cations, etc. In recent years,even human-competitive results have been achieved by a number of groups. EuroGP 2000, the ?rst evolutionary computation conference of the new m- lennium, was the biggest event devoted to genetic programming to be held in Europe in 2000. It was a high quality conference where state-of-the-art work on the theory of GP and applications of GP to real world problems was presented.
This volume contains papers presented at the Fourth European Conference on ComputationalLearningTheory, whichwasheldatNordkirchenCastle, inNo- kirchen, NRW, Germany, from March 29 to 31, 1999. This conference is the fourth in a series of bi-annual conferences established in 1993. TheEuroCOLTconferencesarefocusedontheanalysisoflearningalgorithms and the theory of machine learning, and bring together researchers from a wide variety of related elds. Some of the issues and topics that are addressed include the sample and computational complexity of learning speci c model classes, frameworks modeling the interaction between the learner, teacher and the en- ronment (such as learning with queries, learning control policies and inductive inference), learningwithcomplexmodels(suchasdecisiontrees, neuralnetworks, and support vector machines), learning with minimal prior assumptions (such as mistake-bound models, universal prediction, and agnostic learning), and the study of model selection techniques. We hope that these conferences stimulate an interdisciplinary scienti c interaction that will be fruitful in all represented elds. Thirty- ve papers were submitted to the program committee for conside- tion, and twenty-one of these were accepted for presentation at the conference and publication in these proceedings. In addition, Robert Schapire (AT & T Labs), and Richard Sutton (AT & T Labs) were invited to give lectures and contribute a written version to these proceedings. There were a number of other joint events including a banquet and an excursion to Munster ] . The IFIP WG 1.4 Scholarship was awarded to Andra s Antos for his paper \Lower bounds on the rate of convergence of nonparametric pattern recognition.""
This book constitutes the thoroughly revised and refereed
post-workshop documentation of two international workshops held in
conjunction with the Pacific Rim International Conference on
Artificial Intelligence, PRICAI'96, in Cairns, Australia, in August
1996.
This book constitutes the refereed proceedings of the Second European Workshop on Genetic Programming, EuroPG '99, held in Göteborg, Sweden in May 1999.The 12 revised full papers and 11 posters presented have been carefully reviewed and selected for inclusion in the book. All the relevant aspects of genetic programming are addressed ranging from traditional and foundational issues to applications in a variety of fields.
This book comprises the articles of the 6th Econometric Workshop in Karlsruhe, Germany. In the first part approaches from traditional econometrics and innovative methods from machine learning such as neural nets are applied to financial issues. Neural Networks are successfully applied to different areas such as debtor analysis, forecasting and corporate finance. In the second part various aspects from Value-at-Risk are discussed. The proceedings describe the legal framework, review the basics and discuss new approaches such as shortfall measures and credit risk.
Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learning-especially deep neural networks-make a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks. Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Dive into machine learning concepts in general, as well as deep learning in particular Understand how deep networks evolved from neural network fundamentals Explore the major deep network architectures, including Convolutional and Recurrent Learn how to map specific deep networks to the right problem Walk through the fundamentals of tuning general neural networks and specific deep network architectures Use vectorization techniques for different data types with DataVec, DL4J's workflow tool Learn how to use DL4J natively on Spark and Hadoop
This book constitutes the thoroughly refereed post-conference
documentation of the First Asia-Pacific Conference on Simulated
Evolution and Learning, SEAL'96, held in Taejon, Korea, in November
1996.
The volume of data being collected in solar astronomy has exponentially increased over the past decade and we will be entering the age of petabyte solar data. Deep learning has been an invaluable tool exploited to efficiently extract key information from the massive solar observation data, to solve the tasks of data archiving/classification, object detection and recognition. Astronomical study starts with imaging from recorded raw data, followed by image processing, such as image reconstruction, inpainting and generation, to enhance imaging quality. We study deep learning for solar image processing. First, image deconvolution is investigated for synthesis aperture imaging. Second, image inpainting is explored to repair over-saturated solar image due to light intensity beyond threshold of optical lens. Third, image translation among UV/EUV observation of the chromosphere/corona, Ha observation of the chromosphere and magnetogram of the photosphere is realized by using GAN, exhibiting powerful image domain transfer ability among multiple wavebands and different observation devices. It can compensate the lack of observation time or waveband. In addition, time series model, e.g., LSTM, is exploited to forecast solar burst and solar activity indices. This book presents a comprehensive overview of the deep learning applications in solar astronomy. It is suitable for the students and young researchers who are major in astronomy and computer science, especially interdisciplinary research of them.
This book constitutes the refereed proceedings of the Ninth
European Conference on Machine Learning, ECML-97, held in Prague,
Czech Republic, in April 1997.
The complexity of systems studied in distributed artificial intelligence (DAI), such as multi-agent systems, often makes it extremely difficult or even impossible to correctly and completely specify their behavioral repertoires and dynamics. There is broad agreement that such systems should be equipped with the ability to learn in order to improve their future performance autonomously. The interdisciplinary cooperation of researchers from DAI and machine learning (ML) has established a new and very active area of research and development enjoying steadily increasing attention from both communities. This state-of-the-art report documents current and ongoing developments in the area of learning in DAI systems. It is indispensable reading for anybody active in the area and will serve as a valuable source of information.
This book constitutes the refereed proceedings of the Third
European Conference on Computational Learning Theory, EuroCOLT'97,
held in Jerusalem, Israel, in March 1997.
Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications. The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics. The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data. The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data. Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization. You can check out the book's website here.
This book constitutes the refereed proceedings of the 10th European
Conference on Machine Learning, ECML-98, held in Chemnitz, Germany,
in April 1998.
This edited book provides information on emerging fields of next-generation healthcare informatics with a special emphasis on emerging developments and applications of artificial intelligence, deep learning techniques, computational intelligence methods, Internet of medical things (IoMT), optimization techniques, decision making, nanomedicine, and cloud computing. The book provides a conceptual framework and roadmap for decision-makers for this transformation. The chapters involved in this book cover challenges and opportunities for diabetic retinopathy detection based on deep learning applications, deep learning accelerators in IoT and IoMT, health data analysis, deep reinforcement-based conversational AI agent in healthcare systems, examination of health data performance, multisource data in intelligent medicine, application of genetic algorithms in health care, mental disorder, digital healthcare system with big data analytics, encryption methods in healthcare data security, computation and cognitive bias in healthcare intelligence and pharmacogenomics, guided imagery therapy, cancer detection and prediction techniques, medical image processing for coronavirus, and imbalance learning in health care.
This book constitutes the refereed proceedings of the 8th
International Workshop on Algorithmic Learning Theory, ALT'97, held
in Sendai, Japan, in October 1997.
A learning system can be defined as a system which can adapt its behaviour to become more effective at a particular task or set of tasks. It consists of an architecture with a set of variable parameters and an algorithm. Learning systems are useful in many fields, one of the major areas being in control and system identification. This work covers major aspects of learning systems: system architecture, choice of performance index and methods measuring error. Major learning algorithms are explained, including proofs of convergence. Artificial neural networks, which are an important class of learning systems and have been subject to rapidly increasing popularity, are discussed. Where appropriate, examples have been given to demonstrate the practical use of techniques developed in the text. System identification and control using multi-layer networks and CMAC (Cerebellar Model Articulation Controller) are also presented.
This book includes a selection of twelve carefully revised papers
chosen from the papers accepted for presentation at the 4th
IEEE/Nagoya-University World Wisepersons Workshop held in Nagoya in
November 1995.
This book constitutes the refereed proceedings of the 7th
International Workshop on Algorithmic Learning Theory, ALT '96,
held in Sydney, Australia, in October 1996.
This book constitutes the refereed proceedings of the Third
International Colloquium on Grammatical Inference, ICGI-96, held in
Montpellier, France, in September 1996.
This volume constitutes the proceedings of the Eighth European
Conference on Machine Learning ECML-95, held in Heraclion, Crete in
April 1995.
This volume presents the proceedings of the Second European
Conference on Computational Learning Theory (EuroCOLT '95), held in
Barcelona, Spain in March 1995.
This book is based on the workshop on Adaptation and Learning in
Multi-Agent Systems, held in conjunction with the International
Joint Conference on Artificial Intelligence, IJCAI'95, in Montreal,
Canada in August 1995. |
You may like...
Machine Learning for Biometrics…
Partha Pratim Sarangi, Madhumita Panda, …
Paperback
R2,570
Discovery Miles 25 700
In Order to Learn - How the sequence of…
Frank E. Ritter, Josef Nerb, …
Hardcover
R2,998
Discovery Miles 29 980
Deep Learning for Sustainable…
Ramesh Poonia, Vijander Singh, …
Paperback
R2,957
Discovery Miles 29 570
Research Anthology on Implementing…
Information R Management Association
Hardcover
R15,726
Discovery Miles 157 260
Principled Software Development - Essays…
Peter Muller, Ina Schaefer
Hardcover
R2,691
Discovery Miles 26 910
|