![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics.
This comprehensive and timely book, New Age Analytics: Transforming the Internet through Machine Learning, IoT, and Trust Modeling, explores the importance of tools and techniques used in machine learning, big data mining, and more. The book explains how advancements in the world of the web have been achieved and how the experiences of users can be analyzed. It looks at data gathering by the various electronic means and explores techniques for analysis and management, how to manage voluminous data, user responses, and more. This volume provides an abundance of valuable information for professionals and researchers working in the field of business analytics, big data, social network data, computer science, analytical engineering, and forensic analysis. Moreover, the book provides insights and support from both practitioners and academia in order to highlight the most debated aspects in the field.
This book will teach you the basics of Streamlit, a Python-based application framework used to build interactive dashboards and machine learning web apps. Streamlit reduces development time for web-based application prototypes of data and machine learning models. As you'll see, Streamlit helps develop data-enhanced analytics, build dynamic user experiences, and showcases data for data science and machine learning models. Beginner's Guide to Streamlit with Python begins with the basics of Streamlit by demonstrating how to build a basic application and advances to visualization techniques and their features. Next, it covers the various aspects of a typical Streamlit web application, and explains how to manage flow control and status elements. You'll also explore performance optimization techniques necessary for data modules in a Streamlit application. Following this, you'll see how to deploy Streamlit applications on various platforms. The book concludes with a few prototype natural language processing apps with computer vision implemented using Streamlit. After reading this book, you will understand the concepts, functionalities, and performance of Streamlit, and be able to develop dynamic Streamlit web-based data and machine learning applications of your own. What You Will Learn How to start developing web applications using Streamlit What are Streamlit's components Media elements in Streamlit How to visualize data using various interactive and dynamic Python libraries How to implement models in Streamlit web applications Who This Book Is ForProfessionals working in data science and machine learning domains who want to showcase and deploy their work in a web application with no prior knowledge of web development.
This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book, you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will Learn Implement various techniques in time series analysis using Python. Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecasting Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.
Algorithmic Trading Methods: Applications using Advanced Statistics, Optimization, and Machine Learning Techniques, Second Edition, is a sequel to The Science of Algorithmic Trading and Portfolio Management. This edition includes new chapters on algorithmic trading, advanced trading analytics, regression analysis, optimization, and advanced statistical methods. Increasing its focus on trading strategies and models, this edition includes new insights into the ever-changing financial environment, pre-trade and post-trade analysis, liquidation cost & risk analysis, and compliance and regulatory reporting requirements. Highlighting new investment techniques, this book includes material to assist in the best execution process, model validation, quality and assurance testing, limit order modeling, and smart order routing analysis. Includes advanced modeling techniques using machine learning, predictive analytics, and neural networks. The text provides readers with a suite of transaction cost analysis functions packaged as a TCA library. These programming tools are accessible via numerous software applications and programming languages.
"Foundations of Large-Scale Multimedia Information Management and Retrieval - Mathematics of Perception"" "covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions. The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval. Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
At its core, machine learning is about efficiently identifying patterns and relationships in data. Many tasks, such as finding associations among terms so you can make accurate search recommendations or locating individuals within a social network who have similar interests, are naturally expressed as graphs. Graph-Powered Machine Learning introduces you to graph technology concepts, highlighting the role of graphs in machine learning and big data platforms. You'll get an in-depth look at techniques including data source modeling, algorithm design, link analysis, classification, and clustering. As you master the core concepts, you'll explore three end-to-end projects that illustrate architectures, best design practices, optimization approaches, and common pitfalls. Key Features * The lifecycle of a machine learning project * Three end-to-end applications * Graphs in big data platforms * Data source modeling * Natural language processing, recommendations, and relevant search * Optimization methods Readers comfortable with machine learning basics. About the technology By organizing and analyzing your data as graphs, your applications work more fluidly with graph-centric algorithms like nearest neighbor or page rank where it's important to quickly identify and exploit relevant relationships. Modern graph data stores, like Neo4j or Amazon Neptune, are readily available tools that support graph-powered machine learning. Alessandro Negro is a Chief Scientist at GraphAware. With extensive experience in software development, software architecture, and data management, he has been a speaker at many conferences, such as Java One, Oracle Open World, and Graph Connect. He holds a Ph.D. in Computer Science and has authored several publications on graph-based machine learning.
Genetic Programming Theory and Practice III provides both researchers and industry professionals with the most recent developments in GP theory and practice by exploring the emerging interaction between theory and practice in the cutting-edge, machine learning method of Genetic Programming (GP). The contributions developed from a third workshop at the University of Michigan's Center for the Study of Complex Systems, where leading international genetic programming theorists from major universities and active practitioners from leading industries and businesses meet to examine and challenge how GP theory informs practice and how GP practice impacts GP theory. Applications are from a wide range of domains, including chemical process control, informatics, and circuit design, to name a few.
Discover how all levels Artificial Intelligence (AI) can be present in the most unimaginable scenarios of ordinary lives. This book explores subjects such as neural networks, agents, multi agent systems, supervised learning, and unsupervised learning. These and other topics will be addressed with real world examples, so you can learn fundamental concepts with AI solutions and apply them to your own projects. People tend to talk about AI as something mystical and unrelated to their ordinary life. Practical Artificial Intelligence provides simple explanations and hands on instructions. Rather than focusing on theory and overly scientific language, this book will enable practitioners of all levels to not only learn about AI but implement its practical uses. What You'll Learn Understand agents and multi agents and how they are incorporated Relate machine learning to real-world problems and see what it means to you Apply supervised and unsupervised learning techniques and methods in the real world Implement reinforcement learning, game programming, simulation, and neural networks Who This Book Is For Computer science students, professionals, and hobbyists interested in AI and its applications.
This book provides a comprehensive explanation of precision (i.e., personalized) healthcare and explores how it can be advanced through artificial intelligence (AI) and other data-driven technologies. From improving the diagnosis, treatment, and monitoring of many medical conditions to the effective implementation of precise patient care, this book will help you understand datasets produced from digital health technologies and IoT and teach you how to employ analytical methods such as convolutional neural networks and deep learning to analyze that data. You'll also see how this data-driven approach can enhance and democratize value-based healthcare delivery. Additionally, you'll learn how the convergence of AI and precision health is revolutionizing healthcare, including some of the most difficult challenges facing precision medicine, such as ethics, bias, privacy, and health equity. Precision Health and Artificial Intelligence provides the groundwork for clinicians, engineers, bioinformaticians, and healthcare enthusiasts to apply AI to healthcare. What You Will Learn Understand the components required to facilitate precision health and personalized care Apply and implement precision health systems Overcome the challenges of delivering precision healthcare at scale Reconcile ethical and moral implications of delivering precision healthcare Gain insight into the hurdles providers face while implementing precision healthcare Who This Book Is For Healthcare professionals, clinicians, engineers, bioinformaticians, chief information officers (CIOs), and students
This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning's fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book's main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature's evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.
This contributed volume provides the state-of-the-art development on security and privacy for cyber-physical systems (CPS) and industrial Internet of Things (IIoT). More specifically, this book discusses the security challenges in CPS and IIoT systems as well as how Artificial Intelligence (AI) and Machine Learning (ML) can be used to address these challenges. Furthermore, this book proposes various defence strategies, including intelligent cyber-attack and anomaly detection algorithms for different IIoT applications. Each chapter corresponds to an important snapshot including an overview of the opportunities and challenges of realizing the AI in IIoT environments, issues related to data security, privacy and application of blockchain technology in the IIoT environment. This book also examines more advanced and specific topics in AI-based solutions developed for efficient anomaly detection in IIoT environments. Different AI/ML techniques including deep representation learning, Snapshot Ensemble Deep Neural Network (SEDNN), federated learning and multi-stage learning are discussed and analysed as well. Researchers and professionals working in computer security with an emphasis on the scientific foundations and engineering techniques for securing IIoT systems and their underlying computing and communicating systems will find this book useful as a reference. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, cyber security, and information systems. It also applies to advanced-level students studying electrical engineering and system engineering, who would benefit from the case studies.
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect ("Does altitude cause a change in atmospheric pressure, or vice versa?") is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a "causal mechanism", in the sense that the values of one variable may have been generated from the values of the other. This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website. Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.
The book presents a collection of peer-reviewed articles from the International Conference on Advances and Applications of Artificial Intelligence and Machine Learning - ICAAAIML 2020. The book covers research in artificial intelligence, machine learning, and deep learning applications in healthcare, agriculture, business, and security. This volume contains research papers from academicians, researchers as well as students. There are also papers on core concepts of computer networks, intelligent system design and deployment, real-time systems, wireless sensor networks, sensors and sensor nodes, software engineering, and image processing. This book will be a valuable resource for students, academics, and practitioners in the industry working on AI applications.
This book describes the use of machine learning techniques to build predictive models of uncertainty with application to hydrological models, focusing mainly on the development and testing of two different models. The first focuses on parameter uncertainty analysis by emulating the results of Monte Carlo simulation of hydrological models using efficient machine learning techniques. The second method aims at modelling uncertainty by building an ensemble of specialized machine learning models on the basis of past hydrological modela (TM)s performance. The book then demonstrates the capacity of machine learning techniques for building accurate and efficient predictive models of uncertainty.
This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.
This book provides insights into smart ways of computer log data analysis, with the goal of spotting adversarial actions. It is organized into 3 major parts with a total of 8 chapters that include a detailed view on existing solutions, as well as novel techniques that go far beyond state of the art. The first part of this book motivates the entire topic and highlights major challenges, trends and design criteria for log data analysis approaches, and further surveys and compares the state of the art. The second part of this book introduces concepts that apply character-based, rather than token-based, approaches and thus work on a more fine-grained level. Furthermore, these solutions were designed for "online use", not only forensic analysis, but also process new log lines as they arrive in an efficient single pass manner. An advanced method for time series analysis aims at detecting changes in the overall behavior profile of an observed system and spotting trends and periodicities through log analysis. The third part of this book introduces the design of the AMiner, which is an advanced open source component for log data anomaly mining. The AMiner comes with several detectors to spot new events, new parameters, new correlations, new values and unknown value combinations and can run as stand-alone solution or as sensor with connection to a SIEM solution. More advanced detectors help to determines the characteristics of variable parts of log lines, specifically the properties of numerical and categorical fields. Detailed examples throughout this book allow the reader to better understand and apply the introduced techniques with open source software. Step-by-step instructions help to get familiar with the concepts and to better comprehend their inner mechanisms. A log test data set is available as free download and enables the reader to get the system up and running in no time. This book is designed for researchers working in the field of cyber security, and specifically system monitoring, anomaly detection and intrusion detection. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, and information systems. Forward-thinking practitioners, who would benefit from becoming familiar with the advanced anomaly detection methods, will also be interested in this book.
The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures. First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Based on this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware. The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.
Agricultural systems are uniquely complex systems, given that agricultural systems are parts of natural and ecological systems. Those aspects bring in a substantial degree of uncertainty in system operation. Also, impact factors, such as weather factors, are critical in agricultural systems but these factors are uncontrollable in system management. Modern agriculture has been evolving through precision agriculture beginning in the late 1980s and biotechnological innovations in the early 2000s. Precision agriculture implements site-specific crop production management by integrating agricultural mechanization and information technology in geographic information system (GIS), global navigation satellite system (GNSS), and remote sensing. Now, precision agriculture is set to evolve into smart agriculture with advanced systematization, informatization, intelligence and automation. From precision agriculture to smart agriculture, there is a substantial amount of specific control and communication problems that have been investigated and will continue to be studied. In this book, the core ideas and methods from control problems in agricultural production systems are extracted, and a system view of agricultural production is formulated for the analysis and design of management strategies to control and optimize agricultural production systems while exploiting the intrinsic feedback information-exchanging mechanisms. On this basis, the theoretical framework of agricultural cybernetics is established to predict and control the behavior of agricultural production systems through control theory.
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.
This book presents recent advances in automated machine learning (AutoML) and automated algorithm design and indicates the future directions in this fast-developing area. Methods have been developed to automate the design of neural networks, heuristics and metaheuristics using techniques such as metaheuristics, statistical techniques, machine learning and hyper-heuristics. The book first defines the field of automated design, distinguishing it from the similar but different topics of automated algorithm configuration and automated algorithm selection. The chapters report on the current state of the art by experts in the field and include reviews of AutoML and automated design of search, theoretical analyses of automated algorithm design, automated design of control software for robot swarms, and overfitting as a benchmark and design tool. Also covered are automated generation of constructive and perturbative low-level heuristics, selection hyper-heuristics for automated design, automated design of deep-learning approaches using hyper-heuristics, genetic programming hyper-heuristics with transfer knowledge and automated design of classification algorithms. The book concludes by examining future research directions of this rapidly evolving field. The information presented here will especially interest researchers and practitioners in the fields of artificial intelligence, computational intelligence, evolutionary computation and optimisation.
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors' control of their critical data. |
![]() ![]() You may like...
Artificial Intelligence and Machine…
Vagelis Plevris, Afaq Ahmad, …
Hardcover
R6,849
Discovery Miles 68 490
Cognitive Data Models for Sustainable…
Siddhartha Bhattacharyya, Naba Kumar Mondal, …
Paperback
R2,864
Discovery Miles 28 640
Evolution of Knowledge Science - Myth to…
Syed V. Ahamed
Paperback
Event Mining for Explanatory Modeling
Laleh Jalali, Ramesh Jain
Hardcover
R1,421
Discovery Miles 14 210
Introduction to Statistical and Machine…
Carlos Andre Reis Pinheiro, Mike Patetta
Hardcover
R922
Discovery Miles 9 220
Machine Learning and Artificial…
Benjamin Moseley, Lion Krischer
Hardcover
R5,309
Discovery Miles 53 090
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, …
Paperback
R3,500
Discovery Miles 35 000
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha
Paperback
R4,069
Discovery Miles 40 690
|