![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.
This book describes important methodologies, tools and techniques from the fields of artificial intelligence, basically those which are based on relevant conceptual and formal development. The coverage is wide, ranging from machine learning to the use of data on the Semantic Web, with many new topics. The contributions are concerned with machine learning, big data, data processing in medicine, similarity processing in ontologies, semantic image analysis, as well as many applications including the use of machine leaning techniques for cloud security, artificial intelligence techniques for detecting COVID-19, the Internet of things, etc. The book is meant to be a very important and useful source of information for researchers and doctoral students in data analysis, Semantic Web, big data, machine learning, computer engineering and related disciplines, as well as for postgraduate students who want to integrate the doctoral cycle.
This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.
This book is a collection of best selected research papers presented at the Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020) held during October 22nd to 24th 2020, at the Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, India. The presented papers are grouped under the following topics (a) Machine Learning, Deep learning and Computational intelligence algorithms (b)Wireless communication systems and (c) Mobile data applications and are included in the book. The topics include the latest research and results in the areas of network prediction, traffic classification, call detail record mining, mobile health care, mobile pattern recognition, natural language processing, automatic speech processing, mobility analysis, indoor localization, wireless sensor networks (WSN), energy minimization, routing, scheduling, resource allocation, multiple access, power control, malware detection, cyber security, flooding attacks detection, mobile apps sniffing, MIMO detection, signal detection in MIMO-OFDM, modulation recognition, channel estimation, MIMO nonlinear equalization, super-resolution channel and direction-of-arrival estimation. The book is a rich reference material for academia and industry.
This book gathers selected high-quality research papers presented at Arab Conference for Emerging Technologies 2020 organized virtually in Cairo during 21-23 June 2020. This book emphasizes the role and recent developments in the field of emerging technologies and artificial intelligence, and related technologies with a special focus on sustainable development in the Arab world. The book targets high-quality scientific research papers with applications, including theory, practical, prototypes, new ideas, case studies and surveys which cover machine learning applications in data science.
This book opens with an introduction to the main purpose and tasks of the GIANA challenge, as well as a summary and an analysis of the results and performance obtained by the 20 participating teams. The early and accurate diagnosis of gastrointestinal diseases is critical for increasing the chances of patient survival, and efficient screening is vital for locating precursor lesions. Video colonoscopy and wireless capsule endoscopy (WCE) are the gold-standard tools for colon and intestinal tract screening, respectively. Yet these tools still present some drawbacks, such as lesion miss rate, lack of in vivo diagnosis capabilities, and perforation risk. To mitigate these, computer-aided detection/diagnosis systems can play a key role in assisting clinicians in the different stages of the exploration. This book presents the latest, state-of-the-art approaches in this field, and also tackles the clinical considerations required to efficiently deploy these systems in the exploration room. The coverage draws upon results from the Gastrointestinal Image Analysis (GIANA) Challenge, part of the EndoVis satellite events of the conferences MICCAI 2017 and 2018. Each method proposed to address the different subtasks of the challenges is detailed in a separate chapter, offering a deep insight into this topic of interest for public health. This book appeals to researchers, practitioners, and lecturers spanning both the computer vision and gastroenterology communities.
This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.
This book covers advances and applications of smart technologies including the Internet of Things (IoT), artificial intelligence, and deep learning in areas such as manufacturing, production, renewable energy, and healthcare. It also covers wearable and implantable biomedical devices for healthcare monitoring, smart surveillance, and monitoring applications such as the use of an autonomous drone for disaster management and rescue operations. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the areas such as electrical engineering, electronics and communications engineering, computer engineering, and information technology. * Covers concepts, theories, and applications of artificial intelligence and deep learning, from the perspective of the Internet of Things. * Discusses powers predictive analysis, predictive maintenance, and automated processes for making manufacturing plants more efficient, profitable, and safe. * Explores the importance of blockchain technology in the Internet of Things security issues. * Discusses key deep learning concepts including trust management, identity management, security threats, access control, and privacy. * Showcases the importance of intelligent algorithms for cloud-based Internet of Things applications. This text emphasizes the importance of innovation and improving the profitability of manufacturing plants using smart technologies such as artificial intelligence, deep learning, and the Internet of Things. It further discusses applications of smart technologies in diverse sectors such as agriculture, smart home, production, manufacturing, transport, and healthcare.
This handbook covers a wide range of topics related to the collection, processing, analysis, and use of geospatial data in their various forms. This handbook provides an overview of how spatial computing technologies for big data can be organized and implemented to solve real-world problems. Diverse subdomains ranging from indoor mapping and navigation over trajectory computing to earth observation from space, are also present in this handbook. It combines fundamental contributions focusing on spatio-textual analysis, uncertain databases, and spatial statistics with application examples such as road network detection or colocation detection using GPUs. In summary, this handbook gives an essential introduction and overview of the rich field of spatial information science and big geospatial data. It introduces three different perspectives, which together define the field of big geospatial data: a societal, governmental, and governance perspective. It discusses questions of how the acquisition, distribution and exploitation of big geospatial data must be organized both on the scale of companies and countries. A second perspective is a theory-oriented set of contributions on arbitrary spatial data with contributions introducing into the exciting field of spatial statistics or into uncertain databases. A third perspective is taking a very practical perspective to big geospatial data, ranging from chapters that describe how big geospatial data infrastructures can be implemented and how specific applications can be implemented on top of big geospatial data. This would include for example, research in historic map data, road network extraction, damage estimation from remote sensing imagery, or the analysis of spatio-textual collections and social media. This multi-disciplinary approach makes the book unique. This handbook can be used as a reference for undergraduate students, graduate students and researchers focused on big geospatial data. Professionals can use this book, as well as practitioners facing big collections of geospatial data.
The book explores the concepts and challenges in developing novel approaches using the Internet of Things, intelligent systems, machine intelligence systems, and data analytics in various industrial sectors such as manufacturing, smart agriculture, smart cities, food processing, environment, defense, stock market and healthcare. Further, it discusses the latest improvements in the industrial sectors using machine intelligence learning and intelligent systems techniques, especially robotics. Features: * Highlights case studies and solutions to industrial problems using machine learning and intelligent systems. * Covers applications in smart agriculture, smart healthcare, intelligent machines for disaster management, and smart manufacturing. * Provides the latest methodologies using machine intelligence systems in the early forecasting of weather. * Examines the research challenges and identifies the gaps in data collection and data analysis, especially imagery, signal, and speech. * Provides applications of digitization and smart processing using the Internet of Things and effective intelligent agent systems in manufacturing. * Discusses a systematic and exhaustive analysis of intelligent software effort estimation models. It will serve as an ideal reference text for graduate students, post-graduate students, IT Professionals, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology.
The aim of this textbook is to provide undergraduate students with an introduction to the basic theoretical models of computability, and to develop some of the model's rich and varied structure. Students who have already some experience with elementary discrete mathematics will find this a well-paced first course, and a number of supplementary chapters introduce more advanced concepts. The first part of the book is devoted to finite automata and their properties. Pushdown automata provide a broader class of models and enable the analysis of context-free languages. In the remaining chapters, Turing machines are introduced and the book culminates in discussions of effective computability, decidability, and Gödel's incompleteness theorems. Plenty of exercises are provided, ranging from the easy to the challenging. As a result, this text will make an ideal first course for students of computer science.
Machine learning has become one of the most prevalent topics in recent years. The application of machine learning we see today is a tip of the iceberg. The machine learning revolution has just started to roll out. It is becoming an integral part of all modern electronic devices. Applications in automation areas like automotive, security and surveillance, augmented reality, smart home, retail automation and healthcare are few of them. Robotics is also rising to dominate the automated world. The future applications of machine learning in the robotics area are still undiscovered to the common readers. We are, therefore, putting an effort to write this edited book on the future applications of machine learning on robotics where several applications have been included in separate chapters. The content of the book is technical. It has been tried to cover all possible application areas of Robotics using machine learning. This book will provide the future vision on the unexplored areas of applications of Robotics using machine learning. The ideas to be presented in this book are backed up by original research results. The chapter provided here in-depth look with all necessary theory and mathematical calculations. It will be perfect for laymen and developers as it will combine both advanced and introductory material to form an argument for what machine learning could achieve in the future. It will provide a vision on future areas of application and their approach in detail. Therefore, this book will be immensely beneficial for the academicians, researchers and industry project managers to develop their new project and thereby beneficial for mankind. Original research and review works with model and build Robotics applications using Machine learning are included as chapters in this book.
This volume discusses recent advances in Artificial Intelligence (AI) applications in smart, internet-connected societies, highlighting three key focus areas. The first focus is on intelligent sensing applications. This section details the integration of Wireless Sensing Networks (WSN) and the use of intelligent platforms for WSN applications in urban infrastructures, and discusses AI techniques on hardware and software systems such as machine learning, pattern recognition, expert systems, neural networks, genetic algorithms, and intelligent control in transportation and communications systems. The second focus is on AI-based Internet of Things (IoT) systems, which addresses applications in traffic management, medical health, smart homes and energy. Readers will also learn about how AI can extract useful information from Big Data in IoT systems. The third focus is on crowdsourcing (CS) and computing for smart cities. this section discusses how CS via GPS devices, GIS tools, traffic cameras, smart cards, smart phones and road deceleration devices enables citizens to collect and share data to make cities smart, and how these data can be applied to address urban issues including pollution, traffic congestion, public safety and increased energy consumption. This book will of interest to academics, researchers and students studying AI, cloud computing, IoT and crowdsourcing in urban applications.
RDF-based knowledge graphs require additional formalisms to be fully context-aware, which is presented in this book. This book also provides a collection of provenance techniques and state-of-the-art metadata-enhanced, provenance-aware, knowledge graph-based representations across multiple application domains, in order to demonstrate how to combine graph-based data models and provenance representations. This is important to make statements authoritative, verifiable, and reproducible, such as in biomedical, pharmaceutical, and cybersecurity applications, where the data source and generator can be just as important as the data itself. Capturing provenance is critical to ensure sound experimental results and rigorously designed research studies for patient and drug safety, pathology reports, and medical evidence generation. Similarly, provenance is needed for cyberthreat intelligence dashboards and attack maps that aggregate and/or fuse heterogeneous data from disparate data sources to differentiate between unimportant online events and dangerous cyberattacks, which is demonstrated in this book. Without provenance, data reliability and trustworthiness might be limited, causing data reuse, trust, reproducibility and accountability issues. This book primarily targets researchers who utilize knowledge graphs in their methods and approaches (this includes researchers from a variety of domains, such as cybersecurity, eHealth, data science, Semantic Web, etc.). This book collects core facts for the state of the art in provenance approaches and techniques, complemented by a critical review of existing approaches. New research directions are also provided that combine data science and knowledge graphs, for an increasingly important research topic.
This book focuses on privacy and security concerns in big data and differentiates between privacy and security and privacy requirements in big data. It focuses on the results obtained after applying a systematic mapping study and implementation of security in the big data for utilizing in business under the establishment of "Business Intelligence". The chapters start with the definition of big data, discussions why security is used in business infrastructure and how the security can be improved. In this book, some of the data security and data protection techniques are focused and it presents the challenges and suggestions to meet the requirements of computing, communication and storage capabilities for data mining and analytics applications with large aggregate data in business.
This book covers advances in system, control and computing. This book gathers selected high-quality research papers presented at the International Conference on Advances in Systems, Control and Computing (AISCC 2020), held at MNIT Jaipur during February 27-28, 2020. The first part is advances in systems and it is dedicated to applications of the artificial neural networks, evolutionary computation, swarm intelligence, artificial immune systems, fuzzy system, autonomous and multi-agent systems, machine learning, other intelligent systems and related areas. In the second part, machine learning and other intelligent algorithms for design of control/control analysis are covered. The last part covers advancements, modifications, improvements and applications of intelligent algorithms.
This book presents the latest advances in computational intelligence and data analytics for sustainable future smart cities. It focuses on computational intelligence and data analytics to bring together the smart city and sustainable city endeavors. It also discusses new models, practical solutions and technological advances related to the development and the transformation of cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.
This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks. Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data. Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning.
The Complete Beginner's Guide to Understanding and Building Machine Learning Systems with Python Machine Learning with Python for Everyone will help you master the processes, patterns, and strategies you need to build effective learning systems, even if you're an absolute beginner. If you can write some Python code, this book is for you, no matter how little college-level math you know. Principal instructor Mark E. Fenner relies on plain-English stories, pictures, and Python examples to communicate the ideas of machine learning. Mark begins by discussing machine learning and what it can do; introducing key mathematical and computational topics in an approachable manner; and walking you through the first steps in building, training, and evaluating learning systems. Step by step, you'll fill out the components of a practical learning system, broaden your toolbox, and explore some of the field's most sophisticated and exciting techniques. Whether you're a student, analyst, scientist, or hobbyist, this guide's insights will be applicable to every learning system you ever build or use. Understand machine learning algorithms, models, and core machine learning concepts Classify examples with classifiers, and quantify examples with regressors Realistically assess performance of machine learning systems Use feature engineering to smooth rough data into useful forms Chain multiple components into one system and tune its performance Apply machine learning techniques to images and text Connect the core concepts to neural networks and graphical models Leverage the Python scikit-learn library and other powerful tools Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
This edited book is a collection of chapters invited and presented by experts at 10th industry symposium held during 9-12 January 2020 in conjunction with 16th edition of ICDCIT. The book covers topics, like machine learning and its applications, statistical learning, neural network learning, knowledge acquisition and learning, knowledge intensive learning, machine learning and information retrieval, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms.
This book highlights reliable, valid and practical testing and assessment of interpreting, presenting important developments in China, where testing and assessment have long been a major concern for interpreting educators and researchers, but have remained largely under-reported. The book not only offers theoretical insights into potential issues and problems undermining interpreting assessment, but also describes useful measurement models to address such concerns. Showcasing the latest Chinese research to create rubrics-referenced rating scales, enhance formative assessment practice, and explore (semi-)automated assessment, the book is a valuable resource for educators, trainers and researchers, enabling to gain a better understanding of interpreting testing and assessment as both a worthwhile endeavor and a promising research area.
This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website.
This book is a compilation of peer-reviewed papers presented at the International Conference on Machine Intelligence and Data Science Applications, organized by the School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India, during 4-5 September 2020. The book addresses the algorithmic aspect of machine intelligence which includes the framework and optimization of various states of algorithms. Variety of papers related to wide applications in various fields like data-driven industrial IoT, bioinformatics, network and security, autonomous computing and various other aligned areas. The book concludes with interdisciplinary applications like legal, health care, smart society, cyber-physical system and smart agriculture. All papers have been carefully reviewed. The book is of interest to computer science engineers, lecturers/researchers in machine intelligence discipline and engineering graduates.
This book includes the original, peer reviewed research articles from the 2nd International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA 2020), held in August, 2020 at Goa, India. It covers the latest research trends or developments in areas of data science, artificial intelligence, neural networks, cognitive science and machine learning applications, cyber physical systems and cybernetics.
This book addresses theories and empirical procedures for the application of machine learning and data mining to solve problems in cyber dynamics. It explains the fundamentals of cyber dynamics, and presents how these resilient algorithms, strategies, techniques can be used for the development of the cyberspace environment such as: cloud computing services; cyber security; data analytics; and, disruptive technologies like blockchain. The book presents new machine learning and data mining approaches in solving problems in cyber dynamics. Basic concepts, related work reviews, illustrations, empirical results and tables are integrated in each chapter to enable the reader to fully understand the concepts, methodology, and the results presented. The book contains empirical solutions of problems in cyber dynamics ready for industrial applications. The book will be an excellent starting point for postgraduate students and researchers because each chapter is design to have future research directions. |
![]() ![]() You may like...
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, …
Paperback
R3,500
Discovery Miles 35 000
Deep Learning for Chest Radiographs…
Yashvi Chandola, Jitendra Virmani, …
Paperback
R2,124
Discovery Miles 21 240
Cognitive Data Models for Sustainable…
Siddhartha Bhattacharyya, Naba Kumar Mondal, …
Paperback
R2,864
Discovery Miles 28 640
Data Analytics on Graphs
Ljubisa Stankovic, Danilo P. Mandic, …
Hardcover
R3,494
Discovery Miles 34 940
Foundation Models for Natural Language…
Gerhard PaaĆ, Sven Giesselbach
Hardcover
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
R4,095
Discovery Miles 40 950
|