![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Text analytics (TA) covers a very wide research area. Its overarching goal is to discover and present knowledge - facts, rules, and relationships - that is otherwise hidden in the textual content. The authors of this book guide us in a quest to attain this knowledge automatically, by applying various machine learning techniques.This book describes recent development in multilingual text analysis. It covers several specific examples of practical TA applications, including their problem statements, theoretical background, and implementation of the proposed solution. The reader can see which preprocessing techniques and text representation models were used, how the evaluation process was designed and implemented, and how these approaches can be adapted to multilingual domains.
This book uses numerical analysis as the main tool to investigate methods in machine learning and neural networks. The efficiency of neural network representations for general functions and for polynomial functions is studied in detail, together with an original description of the Latin hypercube method and of the ADAM algorithm for training. Furthermore, unique features include the use of Tensorflow for implementation session, and the description of on going research about the construction of new optimized numerical schemes.
This edited book is a collection of chapters invited and presented by experts at 10th industry symposium held during 9-12 January 2020 in conjunction with 16th edition of ICDCIT. The book covers topics, like machine learning and its applications, statistical learning, neural network learning, knowledge acquisition and learning, knowledge intensive learning, machine learning and information retrieval, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms.
This updated compendium provides a methodical introduction with a coherent and unified repository of ensemble methods, theories, trends, challenges, and applications. More than a third of this edition comprised of new materials, highlighting descriptions of the classic methods, and extensions and novel approaches that have recently been introduced.Along with algorithmic descriptions of each method, the settings in which each method is applicable and the consequences and tradeoffs incurred by using the method is succinctly featured. R code for implementation of the algorithm is also emphasized.The unique volume provides researchers, students and practitioners in industry with a comprehensive, concise and convenient resource on ensemble learning methods.
A Computational Approach to Statistical Learning gives a novel introduction to predictive modeling by focusing on the algorithmic and numeric motivations behind popular statistical methods. The text contains annotated code to over 80 original reference functions. These functions provide minimal working implementations of common statistical learning algorithms. Every chapter concludes with a fully worked out application that illustrates predictive modeling tasks using a real-world dataset. The text begins with a detailed analysis of linear models and ordinary least squares. Subsequent chapters explore extensions such as ridge regression, generalized linear models, and additive models. The second half focuses on the use of general-purpose algorithms for convex optimization and their application to tasks in statistical learning. Models covered include the elastic net, dense neural networks, convolutional neural networks (CNNs), and spectral clustering. A unifying theme throughout the text is the use of optimization theory in the description of predictive models, with a particular focus on the singular value decomposition (SVD). Through this theme, the computational approach motivates and clarifies the relationships between various predictive models. Taylor Arnold is an assistant professor of statistics at the University of Richmond. His work at the intersection of computer vision, natural language processing, and digital humanities has been supported by multiple grants from the National Endowment for the Humanities (NEH) and the American Council of Learned Societies (ACLS). His first book, Humanities Data in R, was published in 2015. Michael Kane is an assistant professor of biostatistics at Yale University. He is the recipient of grants from the National Institutes of Health (NIH), DARPA, and the Bill and Melinda Gates Foundation. His R package bigmemory won the Chamber's prize for statistical software in 2010. Bryan Lewis is an applied mathematician and author of many popular R packages, including irlba, doRedis, and threejs.
This compendium provides a self-contained introduction to mathematical analysis in the field of machine learning and data mining. The mathematical analysis component of the typical mathematical curriculum for computer science students omits these very important ideas and techniques which are indispensable for approaching specialized area of machine learning centered around optimization such as support vector machines, neural networks, various types of regression, feature selection, and clustering. The book is of special interest to researchers and graduate students who will benefit from these application areas discussed in the book. Related Link(s)
This book provides readers with a guide to the use of Digital Twin in manufacturing. It presents a collection of fundamental ideas about sensor electronics and data acquisition, signal and image processing techniques, seamless data communications, artificial intelligence and machine learning for decision making, and explains their necessity for the practical application of Digital Twin in Industry. Providing case studies relevant to the manufacturing processes, systems, and sub-systems, this book is beneficial for both academics and industry professionals within the field of Industry 4.0 and digital manufacturing.
This book highlights recent advances in computational intelligence for signal processing, computing, imaging, artificial intelligence, and their applications. It offers support for researchers involved in designing decision support systems to promote the societal acceptance of ambient intelligence, and presents the latest research on diverse topics in intelligence technologies with the goal of advancing knowledge and applications in this rapidly evolving field. As such, it offers a valuable resource for researchers, developers and educators whose work involves recent advances and emerging technologies in computational intelligence.
This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.
"Probabilistic Reasoning in Intelligent Systems" is a complete
and accessible account of the theoretical foundations and
computational methods that underlie plausible reasoning under
uncertainty. The author provides a coherent explication of
probability as a language for reasoning with partial belief and
offers a unifying perspective on other AI approaches to
uncertainty, such as the Dempster-Shafer formalism, truth
maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to
uncertainty--and offers techniques, based on belief networks, that
provide a mechanism for making semantics-based systems operational.
Specifically, network-propagation techniques serve as a mechanism
for combining the theoretical coherence of probability theory with
modern demands of reasoning-systems technology: modular declarative
inputs, conceptually meaningful inferences, and parallel
distributed computation. Application areas include diagnosis,
forecasting, image interpretation, multi-sensor fusion, decision
support systems, plan recognition, planning, speech recognition--in
short, almost every task requiring that conclusions be drawn from
uncertain clues and incomplete information. "Probabilistic Reasoning in Intelligent Systems" will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors - some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors' combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
This book meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of soft computing on the other. Soft computing is the recent development about the computing methods which include fuzzy set theory/logic, evolutionary computation (EC), probabilistic reasoning, artificial neural networks, machine learning, expert systems, etc. Soft computing refers to a partnership of computational techniques in computer science, artificial intelligence, machine learning, and some other engineering disciplines, which attempt to study, model, and analyze complex problems from different interdisciplinary problems. This, as opposed to traditional computing, deals with approximate models and gives solutions to complex real-life problems. Unlike hard computing, soft computing is tolerant of imprecision, uncertainty, partial truth, and approximations. Interdisciplinary sciences include various challenging problems of science and engineering. Recent developments in soft computing are the bridge to handle different interdisciplinary science and engineering problems. In recent years, the correspondingly increased dialog between these disciplines has led to this new book. This is done, firstly, by encouraging the ways that soft computing may be applied in traditional areas, as well as point towards new and innovative areas of applications and secondly, by encouraging other scientific disciplines to engage in a dialog with the above computation algorithms outlining their problems to both access new methods as well as to suggest innovative developments within itself.
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
This book discusses several exciting research topics and applications in the intelligent Heterogenous Networks (Het-Net) and Internet of Things (IoT) era. We are resolving significant issues towards realizing the future vision of the Artificial Intelligence (AI) in IoT-enabled spaces. Such AI-powered IoT solutions will be employed in satisfying critical conditions towards further advances in our daily smart life. This book overviews the associated issues and proposes the most up to date alternatives. The objective is to pave the way for AI-powered IoT-enabled spaces in the next generation Het-Net technologies and open the door for further innovations. The book presents the latest advances and research into heterogeneous networks in critical IoT applications. It discusses the most important problems, challenges, and issues that arise when designing real-time intelligent heterogeneous networks for diverse scenarios.
This book analyses the implications of the technical, legal, ethical and privacy challenges as well as challenges for human rights and civil liberties regarding Artificial Intelligence (AI) and National Security. It also offers solutions that can be adopted to mitigate or eradicate these challenges wherever possible. As a general-purpose, dual-use technology, AI can be deployed for both good and evil. The use of AI is increasingly becoming of paramount importance to the government's mission to keep their nations safe. However, the design, development and use of AI for national security poses a wide range of legal, ethical, moral and privacy challenges. This book explores national security uses for Artificial Intelligence (AI) in Western Democracies and its malicious use. This book also investigates the legal, political, ethical, moral, privacy and human rights implications of the national security uses of AI in the aforementioned democracies. It illustrates how AI for national security purposes could threaten most individual fundamental rights, and how the use of AI in digital policing could undermine user human rights and privacy. In relation to its examination of the adversarial uses of AI, this book discusses how certain countries utilise AI to launch disinformation attacks by automating the creation of false or misleading information to subvert public discourse. With regards to the potential of AI for national security purposes, this book investigates how AI could be utilized in content moderation to counter violent extremism on social media platforms. It also discusses the current practices in using AI in managing Big Data Analytics demands. This book provides a reference point for researchers and advanced-level students studying or working in the fields of Cyber Security, Artificial Intelligence, Social Sciences, Network Security as well as Law and Criminology. Professionals working within these related fields and law enforcement employees will also find this book valuable as a reference.
This book provides comprehensive coverage on a new direction in computational mathematics research: automatic search for formulas. Formulas must be sought in all areas of science and life: these are the laws of the universe, the macro and micro world, fundamental physics, engineering, weather and natural disasters forecasting; the search for new laws in economics, politics, sociology. Accumulating many years of experience in the development and application of numerical methods of symbolic regression to solving control problems, the authors offer new possibilities not only in the field of control automation, but also in the design of completely different optimal structures in many fields. For specialists in the field of control, Machine Learning Control by Symbolic Regression opens up a new promising direction of research and acquaints scientists with the methods of automatic construction of control systems.For specialists in the field of machine learning, the book opens up a new, much broader direction than neural networks: methods of symbolic regression. This book makes it easy to master this new area in machine learning and apply this approach everywhere neural networks are used. For mathematicians, the book opens up a new approach to the construction of numerical methods for obtaining analytical solutions to unsolvable problems; for example, numerical analytical solutions of algebraic equations, differential equations, non-trivial integrals, etc. For specialists in the field of artificial intelligence, the book offers a machine way to solve problems, framed in the form of analytical relationships.
Human decision-making often transcends our formal models of "rationality." Designing intelligent agents that interact proficiently with people necessitates the modeling of human behavior and the prediction of their decisions. In this book, we explore the task of automatically predicting human decision-making and its use in designing intelligent human-aware automated computer systems of varying natures-from purely conflicting interaction settings (e.g., security and games) to fully cooperative interaction settings (e.g., autonomous driving and personal robotic assistants). We explore the techniques, algorithms, and empirical methodologies for meeting the challenges that arise from the above tasks and illustrate major benefits from the use of these computational solutions in real-world application domains such as security, negotiations, argumentative interactions, voting systems, autonomous driving, and games. The book presents both the traditional and classical methods as well as the most recent and cutting edge advances, providing the reader with a panorama of the challenges and solutions in predicting human decision-making.
This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice. Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features. Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.
This book presents the conference proceedings of the 25th edition of the International Joint Conference on Industrial Engineering and Operations Management. The conference is organized by 6 institutions (from different countries and continents) that gather a large number of members in the field of operational management, industrial engineering and engineering management. This edition of the conference had the title: THE NEXT GENERATION OF PRODUCTION AND SERVICE SYSTEMS in order to emphasis unpredictable and very changeable future. This conference is aimed to enhance connection between academia and industry and to gather researchers and practitioners specializing in operation management, industrial engineering, engineering management and other related disciplines from around the world.
This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.
With the ubiquitous presence of video data and its increasing importance in a wide range of real-world applications, it is becoming increasingly necessary to automatically analyze and interpret object motions from large quantities of footage. Machine Learning for Human Motion Analysis: Theory and Practice highlights the development of robust and effective vision-based motion understanding systems. This advanced publication addresses a broad audience including practicing professionals working with specific vision applications such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.
This contributed volume provides the state-of-the-art development on security and privacy for cyber-physical systems (CPS) and industrial Internet of Things (IIoT). More specifically, this book discusses the security challenges in CPS and IIoT systems as well as how Artificial Intelligence (AI) and Machine Learning (ML) can be used to address these challenges. Furthermore, this book proposes various defence strategies, including intelligent cyber-attack and anomaly detection algorithms for different IIoT applications. Each chapter corresponds to an important snapshot including an overview of the opportunities and challenges of realizing the AI in IIoT environments, issues related to data security, privacy and application of blockchain technology in the IIoT environment. This book also examines more advanced and specific topics in AI-based solutions developed for efficient anomaly detection in IIoT environments. Different AI/ML techniques including deep representation learning, Snapshot Ensemble Deep Neural Network (SEDNN), federated learning and multi-stage learning are discussed and analysed as well. Researchers and professionals working in computer security with an emphasis on the scientific foundations and engineering techniques for securing IIoT systems and their underlying computing and communicating systems will find this book useful as a reference. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, cyber security, and information systems. It also applies to advanced-level students studying electrical engineering and system engineering, who would benefit from the case studies.
This book gathers selected papers presented at International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC 2020), held in Krishna Engineering College, Ghaziabad, India, during December 17-18, 2020. This book discusses key concepts, challenges, and potential solutions in connection with established and emerging topics in advanced computing, renewable energy, and network communications.
Molecular biologists are performing increasingly large and complicated experiments, but often have little background in data analysis. The book is devoted to teaching the statistical and computational techniques molecular biologists need to analyze their data. It explains the big-picture concepts in data analysis using a wide variety of real-world molecular biological examples such as eQTLs, ortholog identification, motif finding, inference of population structure, protein fold prediction and many more. The book takes a pragmatic approach, focusing on techniques that are based on elegant mathematics yet are the simplest to explain to scientists with little background in computers and statistics. |
You may like...
Research Anthology on Digital…
Information Reso Management Association
Hardcover
R21,630
Discovery Miles 216 300
Information and Communication…
Wayne Pease, Michelle Rowe, …
Hardcover
R2,632
Discovery Miles 26 320
Business Intelligence - Concepts…
Information Reso Management Association
Hardcover
R16,339
Discovery Miles 163 390
Information Management: Technologies and…
Iker Morris
Hardcover
Multi-Criteria Decision-Making Sorting…
Luis Martinez Lopez, Alessio Ishizaka, …
Paperback
R2,948
Discovery Miles 29 480
|