0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (6)
  • R250 - R500 (27)
  • R500+ (2,305)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Ripple-Down Rules - The Alternative to Machine Learning (Hardcover): Paul Compton, Byeong Ho Kang Ripple-Down Rules - The Alternative to Machine Learning (Hardcover)
Paul Compton, Byeong Ho Kang
R5,448 R4,072 Discovery Miles 40 720 Save R1,376 (25%) Ships in 12 - 17 working days

This is the first book to explain Ripple-Down Rules, an approach to building knowledge-based systems which is more similar to machine learning methods than other rule-based systems but which depends on using an expert rather than applying statistics to data The book provides detailed worked examples and uses publicly available software to demonstrate Ripple-Down Rules The examples enable users to build their own RDR tools

Computational Learning & Probabilistic Reasoning (Hardcover): A. Gammerman Computational Learning & Probabilistic Reasoning (Hardcover)
A. Gammerman
R8,089 Discovery Miles 80 890 Ships in 12 - 17 working days

Providing a unified coverage of the latest research and applications methods and techniques, this book is devoted to two interrelated techniques for solving some important problems in machine intelligence and pattern recognition, namely probabilistic reasoning and computational learning. The contributions in this volume describe and explore the current developments in computer science and theoretical statistics which provide computational probabilistic models for manipulating knowledge found in industrial and business data. These methods are very efficient for handling complex problems in medicine, commerce and finance. Part I covers Generalisation Principles and Learning and describes several new inductive principles and techniques used in computational learning. Part II describes Causation and Model Selection including the graphical probabilistic models that exploit the independence relationships presented in the graphs, and applications of Bayesian networks to multivariate statistical analysis. Part III includes case studies and descriptions of Bayesian Belief Networks and Hybrid Systems. Finally, Part IV on Decision-Making, Optimization and Classification describes some related theoretical work in the field of probabilistic reasoning. Statisticians, IT strategy planners, professionals and researchers with interests in learning, intelligent databases and pattern recognition and data processing for expert systems will find this book to be an invaluable resource. Real-life problems are used to demonstrate the practical and effective implementation of the relevant algorithms and techniques.

Machine Learning and Cognitive Science Applications in Cyber Security (Hardcover): Muhammad Salman Khan Machine Learning and Cognitive Science Applications in Cyber Security (Hardcover)
Muhammad Salman Khan
R6,443 Discovery Miles 64 430 Ships in 12 - 17 working days

In the past few years, with the evolution of advanced persistent threats and mutation techniques, sensitive and damaging information from a variety of sources have been exposed to possible corruption and hacking. Machine learning, artificial intelligence, predictive analytics, and similar disciplines of cognitive science applications have been found to have significant applications in the domain of cyber security. Machine Learning and Cognitive Science Applications in Cyber Security examines different applications of cognition that can be used to detect threats and analyze data to capture malware. Highlighting such topics as anomaly detection, intelligent platforms, and triangle scheme, this publication is designed for IT specialists, computer engineers, researchers, academicians, and industry professionals interested in the impact of machine learning in cyber security and the methodologies that can help improve the performance and reliability of machine learning applications.

Ripple-Down Rules - The Alternative to Machine Learning (Paperback): Paul Compton, Byeong Ho Kang Ripple-Down Rules - The Alternative to Machine Learning (Paperback)
Paul Compton, Byeong Ho Kang
R1,582 Discovery Miles 15 820 Ships in 12 - 17 working days

This is the first book to explain Ripple-Down Rules, an approach to building knowledge-based systems which is more similar to machine learning methods than other rule-based systems but which depends on using an expert rather than applying statistics to data The book provides detailed worked examples and uses publicly available software to demonstrate Ripple-Down Rules The examples enable users to build their own RDR tools

Spectroscopy and Machine Learning for Water Quality Analysis (Hardcover): Ashutosh Kumar Shukla Spectroscopy and Machine Learning for Water Quality Analysis (Hardcover)
Ashutosh Kumar Shukla
R3,373 Discovery Miles 33 730 Ships in 12 - 17 working days
The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry (Paperback): Stephanie K.... The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry (Paperback)
Stephanie K. Ashenden
R4,173 R2,616 Discovery Miles 26 160 Save R1,557 (37%) Ships in 12 - 17 working days

The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics.

Blockchain and Deep Learning - Future Trends and Enabling Technologies (Hardcover, 1st ed. 2022): Khaled R. Ahmed, Henry Hexmoor Blockchain and Deep Learning - Future Trends and Enabling Technologies (Hardcover, 1st ed. 2022)
Khaled R. Ahmed, Henry Hexmoor
R3,231 R2,300 Discovery Miles 23 000 Save R931 (29%) Ships in 12 - 17 working days

This book introduces to blockchain and deep learning and explores and illustrates the current and new trends that integrate them. The pace and speeds for connectivity are certain on the ascend. Blockchain and deep learning are twin technologies that are integral to integrity and relevance of network contents. Since they are data-driven technologies, rapidly growing interests exist to incorporate them in efficient and secure data sharing and analysis applications. Blockchain and deep learning are sentinel contemporary research technologies. This book provides a comprehensive reference for blockchain and deep learning by covering all important topics. It identifies the bedrock principles and forward projecting methodologies that illuminate the trajectory of developments for the decades ahead.

Machine Learning for Computer and Cyber Security - Principle, Algorithms, and Practices (Paperback): Brij B. Gupta, Quan Z.... Machine Learning for Computer and Cyber Security - Principle, Algorithms, and Practices (Paperback)
Brij B. Gupta, Quan Z. Sheng
R1,574 Discovery Miles 15 740 Ships in 12 - 17 working days

While Computer Security is a broader term which incorporates technologies, protocols, standards and policies to ensure the security of the computing systems including the computer hardware, software and the information stored in it, Cyber Security is a specific, growing field to protect computer networks (offline and online) from unauthorized access, botnets, phishing scams, etc. Machine learning is a branch of Computer Science which enables computing machines to adopt new behaviors on the basis of observable and verifiable data and information. It can be applied to ensure the security of the computers and the information by detecting anomalies using data mining and other such techniques. This book will be an invaluable resource to understand the importance of machine learning and data mining in establishing computer and cyber security. It emphasizes important security aspects associated with computer and cyber security along with the analysis of machine learning and data mining based solutions. The book also highlights the future research domains in which these solutions can be applied. Furthermore, it caters to the needs of IT professionals, researchers, faculty members, scientists, graduate students, research scholars and software developers who seek to carry out research and develop combating solutions in the area of cyber security using machine learning based approaches. It is an extensive source of information for the readers belonging to the field of Computer Science and Engineering, and Cyber Security professionals. Key Features: This book contains examples and illustrations to demonstrate the principles, algorithms, challenges and applications of machine learning and data mining for computer and cyber security. It showcases important security aspects and current trends in the field. It provides an insight of the future research directions in the field. Contents of this book help to prepare the students for exercising better defense in terms of understanding the motivation of the attackers and how to deal with and mitigate the situation using machine learning based approaches in better manner.

Machine Learning: Concepts, Tools And Data Visualization (Hardcover): Minsoo Kang, Eunsoo Choi Machine Learning: Concepts, Tools And Data Visualization (Hardcover)
Minsoo Kang, Eunsoo Choi
R2,925 Discovery Miles 29 250 Ships in 10 - 15 working days

This set of lecture notes, written for those who are unfamiliar with mathematics and programming, introduces the reader to important concepts in the field of machine learning. It consists of three parts. The first is an overview of the history of artificial intelligence, machine learning, and data science, and also includes case studies of well-known AI systems. The second is a step-by-step introduction to Azure Machine Learning, with examples provided. The third is an explanation of the techniques and methods used in data visualization with R, which can be used to communicate the results collected by the AI systems when they are analyzed statistically. Practice questions are provided throughout the book.

Deep Learning for EEG-Based Brain-Computer Interfaces - Representations, Algorithms and Applications (Hardcover): Xiang Zhang,... Deep Learning for EEG-Based Brain-Computer Interfaces - Representations, Algorithms and Applications (Hardcover)
Xiang Zhang, Lina Yao
R2,649 Discovery Miles 26 490 Ships in 10 - 15 working days

Deep Learning for EEG-based Brain-Computer Interfaces is an exciting book that describes how emerging deep learning improves the future development of Brain-Computer Interfaces (BCI) in terms of representations, algorithms, and applications. BCI bridges humanity's neural world and the physical world by decoding an individuals' brain signals into commands recognizable by computer devices. This book presents a highly comprehensive summary of commonly-used brain signals; a systematic introduction of around 12 subcategories of deep learning models; a mind-expanding summary of 200+ state-of-the-art studies adopting deep learning in BCI areas; an overview of a number of BCI applications and how deep learning contributes, along with 31 public BCI datasets. The authors also introduce a set of novel deep learning algorithms aimed at current BCI challenges such as robust representation learning, cross-scenario classification, and semi-supervised learning. Various real-world deep learning-based BCI applications are proposed and some prototypes are presented. The work contained within proposes effective and efficient models which will provide inspiration for people in academia and industry who work on BCI.

Distributed Machine Learning and Gradient Optimization (Hardcover, 1st ed. 2022): Jiawei Jiang, Bin Cui, Ce Zhang Distributed Machine Learning and Gradient Optimization (Hardcover, 1st ed. 2022)
Jiawei Jiang, Bin Cui, Ce Zhang
R4,129 Discovery Miles 41 290 Ships in 12 - 17 working days

This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol. Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appeal to a broad audience in the field of machine learning, artificial intelligence, big data and database management.

Machine Learning - An Artificial Intelligence Approach (Volume I) (Hardcover): Ryszard S. Michalski, Jaime G. Carbonell, Tom M.... Machine Learning - An Artificial Intelligence Approach (Volume I) (Hardcover)
Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell
R1,798 Discovery Miles 17 980 Ships in 12 - 17 working days

Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV and V discuss learning from observation and discovery, and learning from instruction, respectively. Part VI presents two studies on applied learning systems-one on the recovery of valuable information via inductive inference; the other on inducing models of simple algebraic skills from observed student performance in the context of the Leeds Modeling System (LMS). This book is intended for researchers in artificial intelligence, computer science, and cognitive psychology; students in artificial intelligence and related disciplines; and a diverse range of readers, including computer scientists, robotics experts, knowledge engineers, educators, philosophers, data analysts, psychologists, and electronic engineers.

Effective Data Science Infrastructure (Paperback): Ville Tuulos Effective Data Science Infrastructure (Paperback)
Ville Tuulos
R1,703 R1,032 Discovery Miles 10 320 Save R671 (39%) Ships in 12 - 17 working days

Effective Data Science Infrastructure is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data driven companies to manage their cutting edge data infrastructure. As you work through this easy-to-follow guide, you'll set up end-to end infrastructure from the ground up, with a fully customizable process you can easily adapt to your company. You'll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python. Throughout, you'll follow a human-centric approach focused on user experience and meeting the unique needs of data scientists. About the Technology Turning data science projects from small prototypes to sustainable business processes requires scalable and reliable infrastructure. This book lays out the workflows, components, and methods of the full infrastructure stack for data science, from data warehousing and scalable compute to modeling frameworks.

New Thinking in GIScience (Hardcover, 1st ed. 2022): Bin Li, Xun Shi, A-Xing Zhu, Cuizhen Wang, Hui Lin New Thinking in GIScience (Hardcover, 1st ed. 2022)
Bin Li, Xun Shi, A-Xing Zhu, Cuizhen Wang, Hui Lin
R5,161 Discovery Miles 51 610 Ships in 12 - 17 working days

This book is a collection of seminal position essays by leading researchers on new development in Geographic Information Sciences (GIScience), covering a wide range of topics and representing a variety of perspectives. The authors propose enrichments and extensions to the conceptual framework of GIScience; discuss a series of transformational methodologies and technologies for analysis and modeling; elaborate on key issues in innovative approaches to data acquisition and integration, across earth sensing to social sensing; and outline frontiers in application domains, spanning from natural science to humanities and social science, e.g., urban science, land use and planning, social governance, transportation, crime, and public health, just name a few. The book provides an overview of the strategic directions on GIScience research and development. It will benefit researchers and practitioners in the field who are seeking a high-level reference regarding those directions.

Recent Advances in Internet of Things and Machine Learning - Real-World Applications (Hardcover, 1st ed. 2022): Valentina E.... Recent Advances in Internet of Things and Machine Learning - Real-World Applications (Hardcover, 1st ed. 2022)
Valentina E. Balas, Vijender Kumar Solanki, Raghvendra Kumar
R5,157 Discovery Miles 51 570 Ships in 12 - 17 working days

This book covers a domain that is significantly impacted by the growth of soft computing. Internet of Things (IoT)-related applications are gaining much attention with more and more devices which are getting connected, and they become the potential components of some smart applications. Thus, a global enthusiasm has sparked over various domains such as health, agriculture, energy, security, and retail. So, in this book, the main objective is to capture this multifaceted nature of IoT and machine learning in one single place. According to the contribution of each chapter, the book also provides a future direction for IoT and machine learning research. The objectives of this book are to identify different issues, suggest feasible solutions to those identified issues, and enable researchers and practitioners from both academia and industry to interact with each other regarding emerging technologies related to IoT and machine learning. In this book, we look for novel chapters that recommend new methodologies, recent advancement, system architectures, and other solutions to prevail over the limitations of IoT and machine learning.

Time Series Forecasting in Python (Paperback): Marco Peixeiro Time Series Forecasting in Python (Paperback)
Marco Peixeiro
R2,374 R1,562 Discovery Miles 15 620 Save R812 (34%) Ships in 12 - 17 working days

Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In Time Series Forecasting in Python you will learn how to: Recognize a time series forecasting problem and build a performant predictive model Create univariate forecasting models that account for seasonal effects and external variables Build multivariate forecasting models to predict many time series at once Leverage large datasets by using deep learning for forecasting time series Automate the forecasting process DESCRIPTION Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You'll explore interesting real-world datasets like Google's daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow.Time Series Forecasting in Python teaches you to apply time series forecasting and get immediate, meaningful predictions. You'll learn both traditional statistical and new deep learning models for time series forecasting, all fully illustrated with Python source code. Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You'll explore interesting real-world datasets like Google's daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. about the technology Time series forecasting reveals hidden trends and makes predictions about the future from your data. This powerful technique has proven incredibly valuable across multiple fields-from tracking business metrics, to healthcare and the sciences. Modern Python libraries and powerful deep learning tools have opened up new methods and utilities for making practical time series forecasts. about the book Time Series Forecasting in Python teaches you to apply time series forecasting and get immediate, meaningful predictions. You'll learn both traditional statistical and new deep learning models for time series forecasting, all fully illustrated with Python source code. Test your skills with hands-on projects for forecasting air travel, volume of drug prescriptions, and the earnings of Johnson & Johnson. By the time you're done, you'll be ready to build accurate and insightful forecasting models with tools from the Python ecosystem.

Reinforcement Learning for Cyber-Physical Systems - with Cybersecurity Case Studies (Paperback): Chong Li, Meikang Qiu Reinforcement Learning for Cyber-Physical Systems - with Cybersecurity Case Studies (Paperback)
Chong Li, Meikang Qiu
R1,797 R1,360 Discovery Miles 13 600 Save R437 (24%) Ships in 12 - 17 working days

Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies was inspired by recent developments in the fields of reinforcement learning (RL) and cyber-physical systems (CPSs). Rooted in behavioral psychology, RL is one of the primary strands of machine learning. Different from other machine learning algorithms, such as supervised learning and unsupervised learning, the key feature of RL is its unique learning paradigm, i.e., trial-and-error. Combined with the deep neural networks, deep RL become so powerful that many complicated systems can be automatically managed by AI agents at a superhuman level. On the other hand, CPSs are envisioned to revolutionize our society in the near future. Such examples include the emerging smart buildings, intelligent transportation, and electric grids. However, the conventional hand-programming controller in CPSs could neither handle the increasing complexity of the system, nor automatically adapt itself to new situations that it has never encountered before. The problem of how to apply the existing deep RL algorithms, or develop new RL algorithms to enable the real-time adaptive CPSs, remains open. This book aims to establish a linkage between the two domains by systematically introducing RL foundations and algorithms, each supported by one or a few state-of-the-art CPS examples to help readers understand the intuition and usefulness of RL techniques. Features Introduces reinforcement learning, including advanced topics in RL Applies reinforcement learning to cyber-physical systems and cybersecurity Contains state-of-the-art examples and exercises in each chapter Provides two cybersecurity case studies Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies is an ideal text for graduate students or junior/senior undergraduates in the fields of science, engineering, computer science, or applied mathematics. It would also prove useful to researchers and engineers interested in cybersecurity, RL, and CPS. The only background knowledge required to appreciate the book is a basic knowledge of calculus and probability theory.

Mathematics and Programming for Machine Learning with R - From the Ground Up (Paperback): William Claster Mathematics and Programming for Machine Learning with R - From the Ground Up (Paperback)
William Claster
R1,613 Discovery Miles 16 130 Ships in 12 - 17 working days

Based on the author's experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms

Mathematics and Programming for Machine Learning with R - From the Ground Up (Hardcover): William Claster Mathematics and Programming for Machine Learning with R - From the Ground Up (Hardcover)
William Claster
R3,223 Discovery Miles 32 230 Ships in 12 - 17 working days

Based on the author's experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms

Supervised Machine Learning - Optimization Framework and Applications with SAS and R (Hardcover): Tanya Kolosova, Samuel... Supervised Machine Learning - Optimization Framework and Applications with SAS and R (Hardcover)
Tanya Kolosova, Samuel Berestizhevsky
R3,621 Discovery Miles 36 210 Ships in 12 - 17 working days

AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. The AI framework comprises of bootstrapping to create multiple training and testing data sets with various characteristics, design and analysis of statistical experiments to identify optimal feature subsets and optimal hyper-parameters for ML methods, data contamination to test for the robustness of the classifiers. Key Features: Using ML methods by itself doesn't ensure building classifiers that generalize well for new data Identifying optimal feature subsets and hyper-parameters of ML methods can be resolved using design and analysis of statistical experiments Using a bootstrapping approach to massive sampling of training and tests datasets with various data characteristics (e.g.: contaminated training sets) allows dealing with bias Developing of SAS-based table-driven environment allows managing all meta-data related to the proposed AI framework and creating interoperability with R libraries to accomplish variety of statistical and machine-learning tasks Computer programs in R and SAS that create AI framework are available on GitHub

Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering II - Selected Papers from the 17th... Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering II - Selected Papers from the 17th International Symposium CMBBE and 5th Conference on Imaging and Visualization, September 7-9, 2021 (Hardcover, 1st ed. 2023)
Joao Manuel R.S. Tavares, Christoph Bourauel, Liesbet Geris, Jos Vander Slote
R3,807 Discovery Miles 38 070 Ships in 12 - 17 working days

This book gathers selected, extended and revised contributions to the 17th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and the 5th Conference on Imaging and Visualization (CMBBE 2021), held online on September 7-9, 2021, from Bonn, Germany. It reports on cutting-edge models, algorithms and imaging techniques for studying cells, tissues and organs in normal and pathological conditions. It covers numerical and machine learning methods, finite element modeling and virtual reality techniques, applied to understand biomechanics of movement, fluid and soft tissue biomechanics. It also reports on related advances in rehabilitation, surgery and diagnosis. All in all, this book offers a timely snapshot of the latest research and current challenges at the interface between biomedical engineering, computational biomechanics and biological imaging. Thus, it is expected to provide a source of inspiration for future research and cross-disciplinary collaborations.

Big Data, IoT, and Machine Learning - Tools and Applications (Hardcover): Rashmi Agrawal, Marcin Paprzycki, Neha Gupta Big Data, IoT, and Machine Learning - Tools and Applications (Hardcover)
Rashmi Agrawal, Marcin Paprzycki, Neha Gupta
R4,373 Discovery Miles 43 730 Ships in 12 - 17 working days

The idea behind this book is to simplify the journey of aspiring readers and researchers to understand Big Data, IoT and Machine Learning. It also includes various real-time/offline applications and case studies in the fields of engineering, computer science, information security and cloud computing using modern tools. This book consists of two sections: Section I contains the topics related to Applications of Machine Learning, and Section II addresses issues about Big Data, the Cloud and the Internet of Things. This brings all the related technologies into a single source so that undergraduate and postgraduate students, researchers, academicians and people in industry can easily understand them. Features Addresses the complete data science technologies workflow Explores basic and high-level concepts and services as a manual for those in the industry and at the same time can help beginners to understand both basic and advanced aspects of machine learning Covers data processing and security solutions in IoT and Big Data applications Offers adaptive, robust, scalable and reliable applications to develop solutions for day-to-day problems Presents security issues and data migration techniques of NoSQL databases

The Theory and Practice of Enterprise AI - Recipes and Reference Implementations for Marketing, Supply Chain, and Production... The Theory and Practice of Enterprise AI - Recipes and Reference Implementations for Marketing, Supply Chain, and Production Operations (Hardcover)
Ilya Katsov
R1,411 Discovery Miles 14 110 Ships in 9 - 15 working days
Machine Learning in Chemistry - The Impact of Artificial Intelligence (Hardcover): Hugh M. Cartwright Machine Learning in Chemistry - The Impact of Artificial Intelligence (Hardcover)
Hugh M. Cartwright
R6,156 Discovery Miles 61 560 Ships in 12 - 17 working days

Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.

Deep Learning in Science (Hardcover): Pierre Baldi Deep Learning in Science (Hardcover)
Pierre Baldi
R1,715 R1,594 Discovery Miles 15 940 Save R121 (7%) Ships in 12 - 17 working days

This is the first rigorous, self-contained treatment of the theory of deep learning. Starting with the foundations of the theory and building it up, this is essential reading for any scientists, instructors, and students interested in artificial intelligence and deep learning. It provides guidance on how to think about scientific questions, and leads readers through the history of the field and its fundamental connections to neuroscience. The author discusses many applications to beautiful problems in the natural sciences, in physics, chemistry, and biomedicine. Examples include the search for exotic particles and dark matter in experimental physics, the prediction of molecular properties and reaction outcomes in chemistry, and the prediction of protein structures and the diagnostic analysis of biomedical images in the natural sciences. The text is accompanied by a full set of exercises at different difficulty levels and encourages out-of-the-box thinking.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Model-Based Reinforcement Learning…
M. Farsi Hardcover R3,127 Discovery Miles 31 270
Deep Learning Applications
Pier Luigi Mazzeo, Paolo Spagnolo Hardcover R3,413 Discovery Miles 34 130
Optimization and Machine Learning…
R Chelouah Hardcover R4,145 Discovery Miles 41 450
Multimedia Streaming in SDN/NFV and 5G…
Barakabitze Hardcover R3,142 Discovery Miles 31 420
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha Paperback R4,069 Discovery Miles 40 690
Machine Learning and Artificial…
Benjamin Moseley, Lion Krischer Hardcover R5,309 Discovery Miles 53 090
Basic Python Commands - Learn the Basic…
Manuel Mcfeely Hardcover R869 R727 Discovery Miles 7 270
Cognitive Robotics and Adaptive…
Maki K. Habib Hardcover R2,835 Discovery Miles 28 350
Machine Learning and Biometrics
Jucheng Yang, Dong Sun Park, … Hardcover R3,387 Discovery Miles 33 870
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, … Hardcover R7,369 Discovery Miles 73 690

 

Partners