0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (5)
  • R250 - R500 (28)
  • R500+ (2,330)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Five-Layer Intelligence of the Machine Brain - System Modelling and Simulation (Hardcover, 1st ed. 2022): Wenfeng Wang, XI... Five-Layer Intelligence of the Machine Brain - System Modelling and Simulation (Hardcover, 1st ed. 2022)
Wenfeng Wang, XI Chen, Tuozhong Yao
R4,320 Discovery Miles 43 200 Ships in 12 - 17 working days

This book intends to report the new results of the efforts on the study of Layered Intelligence of the Machine Brain (LIMB). The book collects novel research ideas in LIMB and summarizes the current machine intelligence level as "five layer intelligence"- environments sensing, active learning, cognitive computing, intelligent decision making and automatized execution. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms, and applications of LIMB.

Artificial Intelligence, Big Data and Data Science in Statistics - Challenges and Solutions in Environmetrics, the Natural... Artificial Intelligence, Big Data and Data Science in Statistics - Challenges and Solutions in Environmetrics, the Natural Sciences and Technology (Hardcover, 1st ed. 2022)
Ansgar Steland, Kwok-Leung Tsui
R5,388 Discovery Miles 53 880 Ships in 12 - 17 working days

This book discusses the interplay between statistics, data science, machine learning and artificial intelligence, with a focus on environmental science, the natural sciences, and technology. It covers the state of the art from both a theoretical and a practical viewpoint and describes how to successfully apply machine learning methods, demonstrating the benefits of statistics for modeling and analyzing high-dimensional and big data. The book's expert contributions include theoretical studies of machine learning methods, expositions of general methodologies for sound statistical analyses of data as well as novel approaches to modeling and analyzing data for specific problems and areas. In terms of applications, the contributions deal with data as arising in industrial quality control, autonomous driving, transportation and traffic, chip manufacturing, photovoltaics, football, transmission of infectious diseases, Covid-19 and public health. The book will appeal to statisticians and data scientists, as well as engineers and computer scientists working in related fields or applications.

Evolutionary Multi-Task Optimization - Foundations and Methodologies (Hardcover, 1st ed. 2023): Liang Feng, Abhishek Gupta, Kay... Evolutionary Multi-Task Optimization - Foundations and Methodologies (Hardcover, 1st ed. 2023)
Liang Feng, Abhishek Gupta, Kay Chen Tan, Yew Soon Ong
R5,010 Discovery Miles 50 100 Ships in 12 - 17 working days

A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain's ability to generalize in optimization - particularly in population-based evolutionary algorithms - have received little attention to date. Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems, each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks. This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.

Applications of Machine Learning and Data Analytics Models in Maritime Transportation (Hardcover): Ran Yan, Shuaian Wang Applications of Machine Learning and Data Analytics Models in Maritime Transportation (Hardcover)
Ran Yan, Shuaian Wang
R3,555 R3,204 Discovery Miles 32 040 Save R351 (10%) Ships in 10 - 15 working days

Machine learning and data analytics can be used to inform technical, commercial and financial decisions in the maritime industry. Applications of Machine Learning and Data Analytics Models in Maritime Transportation explores the fundamental principles of analysing maritime transportation related practical problems using data-driven models, with a particular focus on machine learning and operations research models. Data-enabled methodologies, technologies, and applications in maritime transportation are clearly and concisely explained, and case studies of typical maritime challenges and solutions are also included. The authors begin with an introduction to maritime transportation, followed by chapters providing an overview of ship inspection by port state control, and the principles of data driven models. Further chapters cover linear regression models, Bayesian networks, support vector machines, artificial neural networks, tree-based models, association rule learning, cluster analysis, classic and emerging approaches to solving practical problems in maritime transport, incorporating shipping domain knowledge into data-driven models, explanation of black-box machine learning models in maritime transport, linear optimization, advanced linear optimization, and integer optimization. A concluding chapter provides an overview of coverage and explores future possibilities in the field. The book will be especially useful to researchers and professionals with expertise in maritime research who wish to learn how to apply data analytics and machine learning to their fields.

Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory (Hardcover, 1992 ed.): Shi-Yu... Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory (Hardcover, 1992 ed.)
Shi-Yu Huang
R8,982 Discovery Miles 89 820 Ships in 12 - 17 working days

Intelligent decision support is based on human knowledge related to a specific part of a real or abstract world. When the knowledge is gained by experience, it is induced from empirical data. The data structure, called an information system, is a record of objects described by a set of attributes. Knowledge is understood here as an ability to classify objects. Objects being in the same class are indiscernible by means of attributes and form elementary building blocks (granules, atoms). In particular, the granularity of knowledge causes that some notions cannot be expressed precisely within available knowledge and can be defined only vaguely. In the rough sets theory created by Z. Pawlak each imprecise concept is replaced by a pair of precise concepts called its lower and upper approximation. These approximations are fundamental tools and reasoning about knowledge. The rough sets philosophy turned out to be a very effective, new tool with many successful real-life applications to its credit. It is worthwhile stressing that no auxiliary assumptions are needed about data, like probability or membership function values, which is its great advantage. The present book reveals a wide spectrum of applications of the rough set concept, giving the reader the flavor of, and insight into, the methodology of the newly developed disciplines. Although the book emphasizes applications, comparison with other related methods and further developments receive due attention.

Visual Question Answering - From Theory to Application (Hardcover, 1st ed. 2022): Qi Wu, Peng Wang, Xin Wang, Xiaodong He,... Visual Question Answering - From Theory to Application (Hardcover, 1st ed. 2022)
Qi Wu, Peng Wang, Xin Wang, Xiaodong He, Wenwu Zhu
R3,973 Discovery Miles 39 730 Ships in 12 - 17 working days

Visual Question Answering (VQA) usually combines visual inputs like image and video with a natural language question concerning the input and generates a natural language answer as the output. This is by nature a multi-disciplinary research problem, involving computer vision (CV), natural language processing (NLP), knowledge representation and reasoning (KR), etc. Further, VQA is an ambitious undertaking, as it must overcome the challenges of general image understanding and the question-answering task, as well as the difficulties entailed by using large-scale databases with mixed-quality inputs. However, with the advent of deep learning (DL) and driven by the existence of advanced techniques in both CV and NLP and the availability of relevant large-scale datasets, we have recently seen enormous strides in VQA, with more systems and promising results emerging. This book provides a comprehensive overview of VQA, covering fundamental theories, models, datasets, and promising future directions. Given its scope, it can be used as a textbook on computer vision and natural language processing, especially for researchers and students in the area of visual question answering. It also highlights the key models used in VQA.

Question Answering over Text and Knowledge Base (Hardcover, 1st ed. 2022): Saeedeh Momtazi, Zahra Abbasiantaeb Question Answering over Text and Knowledge Base (Hardcover, 1st ed. 2022)
Saeedeh Momtazi, Zahra Abbasiantaeb
R4,669 Discovery Miles 46 690 Ships in 12 - 17 working days

This book provides a coherent and complete overview of various Question Answering (QA) systems. It covers three main categories based on the source of the data that can be unstructured text (TextQA), structured knowledge graphs (KBQA), and the combination of both. Developing a QA system usually requires using a combination of various important techniques, including natural language processing, information retrieval and extraction, knowledge graph processing, and machine learning. After a general introduction and an overview of the book in Chapter 1, the history of QA systems and the architecture of different QA approaches are explained in Chapter 2. It starts with early close domain QA systems and reviews different generations of QA up to state-of-the-art hybrid models. Next, Chapter 3 is devoted to explaining the datasets and the metrics used for evaluating TextQA and KBQA. Chapter 4 introduces the neural and deep learning models used in QA systems. This chapter includes the required knowledge of deep learning and neural text representation models for comprehending the QA models over text and QA models over knowledge base explained in Chapters 5 and 6, respectively. In some of the KBQA models the textual data is also used as another source besides the knowledge base; these hybrid models are studied in Chapter 7. In Chapter 8, a detailed explanation of some well-known real applications of the QA systems is provided. Eventually, open issues and future work on QA are discussed in Chapter 9. This book delivers a comprehensive overview on QA over text, QA over knowledge base, and hybrid QA systems which can be used by researchers starting in this field. It will help its readers to follow the state-of-the-art research in the area by providing essential and basic knowledge.

Empowering Sustainable Industrial 4.0 Systems With Machine Intelligence (Hardcover): Muneer Ahmad, Noor Zaman Empowering Sustainable Industrial 4.0 Systems With Machine Intelligence (Hardcover)
Muneer Ahmad, Noor Zaman
R7,039 Discovery Miles 70 390 Ships in 10 - 15 working days

The recent advancement of industrial computerization has significantly helped in resolving the challenges associated with the conventional industrial systems. The industry 4.0 quality standards demand smart and intelligent solutions to revolutionize the industrial applications. Despite, a wide range of available industrial solutions, still the precision, accuracy and speed are a matter of interest to scientists to device novel solutions. In addition, the IoT technologies, though, have gained an inspiration in industrial applications, yet, the time and resource complexity of industrial sensors require intelligent management and monitoring of sensors' data. The integration of machine intelligence and IoT technologies can greatly help in devising cutting edge solutions to very recent issues of industrial applications. Machine intelligence is the most appropriate set of techniques for constructing prediction models due to its capability in handling large-scale and complex datasets. Machine intelligent solution can effectively help the industrial stakeholders in automatic detection of faults, early prediction of errors and risks, tracking industrial shipments through intelligent sensors, health industry risk mitigation employing IoT and machine intelligence, disaster management, and many more. The objectives include: Assessment of limitations of industrial systems, challenges and solutions; Empowerment of industrial systems with machine intelligence to mitigate the risks; Smart safety measures towards industrial systems; and Presentation of recent intelligent systems for a wide range of industrials applications.

Applied Software Development With Python & Machine Learning By Wearable & Wireless Systems For Movement Disorder Treatment Via... Applied Software Development With Python & Machine Learning By Wearable & Wireless Systems For Movement Disorder Treatment Via Deep Brain Stimulation (Hardcover)
Robert LeMoyne, Timothy Mastroianni
R2,464 Discovery Miles 24 640 Ships in 10 - 15 working days

The book presents the confluence of wearable and wireless inertial sensor systems, such as a smartphone, for deep brain stimulation for treating movement disorders, such as essential tremor, and machine learning. The machine learning distinguishes between distinct deep brain stimulation settings, such as 'On' and 'Off' status. This achievement demonstrates preliminary insight with respect to the concept of Network Centric Therapy, which essentially represents the Internet of Things for healthcare and the biomedical industry, inclusive of wearable and wireless inertial sensor systems, machine learning, and access to Cloud computing resources.Imperative to the realization of these objectives is the organization of the software development process. Requirements and pseudo code are derived, and software automation using Python for post-processing the inertial sensor signal data to a feature set for machine learning is progressively developed. A perspective of machine learning in terms of a conceptual basis and operational overview is provided. Subsequently, an assortment of machine learning algorithms is evaluated based on quantification of a reach and grasp task for essential tremor using a smartphone as a wearable and wireless accelerometer system.Furthermore, these skills regarding the software development process and machine learning applications with wearable and wireless inertial sensor systems enable new and novel biomedical research only bounded by the reader's creativity.

Algorithmic Learning in a Random World (Hardcover, 2nd ed. 2022): Vladimir Vovk, Alexander Gammerman, Glenn Shafer Algorithmic Learning in a Random World (Hardcover, 2nd ed. 2022)
Vladimir Vovk, Alexander Gammerman, Glenn Shafer
R5,052 Discovery Miles 50 520 Ships in 12 - 17 working days

This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described - conformal predictors - are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties. Algorithmic Learning in a Random World contains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of "randomness" (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions. Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.

Data Analytics in Power Markets (Hardcover, 1st ed. 2021): Qixin Chen, Hongye Guo, Kedi Zheng, Yi Wang Data Analytics in Power Markets (Hardcover, 1st ed. 2021)
Qixin Chen, Hongye Guo, Kedi Zheng, Yi Wang
R3,980 Discovery Miles 39 800 Ships in 12 - 17 working days

This book aims to solve some key problems in the decision and optimization procedure for power market organizers and participants in data-driven approaches. It begins with an overview of the power market data and analyzes on their characteristics and importance for market clearing. Then, the first part of the book discusses the essential problem of bus load forecasting from the perspective of market organizers. The related works include load uncertainty modeling, bus load bad data correction, and monthly load forecasting. The following part of the book answers how much information can be obtained from public data in locational marginal price (LMP)-based markets. It introduces topics such as congestion identification, componential price forecasting, quantifying the impact of forecasting error, and financial transmission right investment. The final part of the book answers how to model the complex market bidding behaviors. Specific works include pattern extraction, aggregated supply curve forecasting, market simulation, and reward function identification in bidding. These methods are especially useful for market organizers to understand the bidding behaviors of market participants and make essential policies. It will benefit and inspire researchers, graduate students, and engineers in the related fields.

New Horizons in Computational Chemistry Software (Hardcover, 1st ed. 2022): Michael Filatov, Cheol H. Choi, Massimo Olivucci New Horizons in Computational Chemistry Software (Hardcover, 1st ed. 2022)
Michael Filatov, Cheol H. Choi, Massimo Olivucci
R7,978 Discovery Miles 79 780 Ships in 10 - 15 working days

This volume presents the current status of software development in the field of computational and theoretical chemistry and gives an overview of the emerging trends. The challenges of maintaining the legacy codes and their adaptation to the rapidly growing hardware capabilities and the new programming environments are surveyed in a series of topical reviews written by the core developers and maintainers of the popular quantum chemistry and molecular dynamics programs. Special emphasis is given to new computational methodologies and practical aspects of their implementation and application in the computational chemistry codes. Modularity of the computational chemistry software is an emerging concept that enables to bypass the development and maintenance bottleneck of the legacy software and to customize the software using the best available computational procedures implemented in the form of self-contained modules. Perspectives on modular design of the computer programs for modeling molecular electronic structure, non-adiabatic dynamics, kinetics, as well as for data visualization are presented by the researchers actively working in the field of software development and application. This volume is of interest to quantum and computational chemists as well as experimental chemists actively using and developing computational software for their research. Chapters "MLatom 2: An Integrative Platform for Atomistic Machine Learning" and "Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol" are available open access under a CC BY 4.0 License via link.springer.com.

Computational and Machine Learning Tools for Archaeological Site Modeling (Hardcover, 1st ed. 2022): Maria Elena Castiello Computational and Machine Learning Tools for Archaeological Site Modeling (Hardcover, 1st ed. 2022)
Maria Elena Castiello
R6,431 Discovery Miles 64 310 Ships in 12 - 17 working days

This book describes a novel machine-learning based approach to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure. It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.

Handbook of Machine Learning Applications for Genomics (Hardcover, 1st ed. 2022): Sanjiban Sekhar Roy, Y-H. Taguchi Handbook of Machine Learning Applications for Genomics (Hardcover, 1st ed. 2022)
Sanjiban Sekhar Roy, Y-H. Taguchi
R7,120 Discovery Miles 71 200 Ships in 12 - 17 working days

Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians, practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.

Heterogeneous Graph Representation Learning and Applications (Hardcover, 1st ed. 2022): Chuan Shi, Xiao Wang, Philip S. Yu Heterogeneous Graph Representation Learning and Applications (Hardcover, 1st ed. 2022)
Chuan Shi, Xiao Wang, Philip S. Yu
R4,684 Discovery Miles 46 840 Ships in 12 - 17 working days

Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the need to incorporate heterogeneous structural (graph) information consisting of multiple types of node and edge, but also the need to consider heterogeneous attributes or types of content (e.g. text or image) associated with each node. Although considerable advances have been made in homogeneous (and heterogeneous) graph embedding, attributed graph embedding and graph neural networks, few are capable of simultaneously and effectively taking into account heterogeneous structural (graph) information as well as the heterogeneous content information of each node. In this book, we provide a comprehensive survey of current developments in HG representation learning. More importantly, we present the state-of-the-art in this field, including theoretical models and real applications that have been showcased at the top conferences and journals, such as TKDE, KDD, WWW, IJCAI and AAAI. The book has two major objectives: (1) to provide researchers with an understanding of the fundamental issues and a good point of departure for working in this rapidly expanding field, and (2) to present the latest research on applying heterogeneous graphs to model real systems and learning structural features of interaction systems. To the best of our knowledge, it is the first book to summarize the latest developments and present cutting-edge research on heterogeneous graph representation learning. To gain the most from it, readers should have a basic grasp of computer science, data mining and machine learning.

Machine Learning of Inductive Bias (Hardcover, 1986 ed.): Paul E Utgoff Machine Learning of Inductive Bias (Hardcover, 1986 ed.)
Paul E Utgoff
R3,129 Discovery Miles 31 290 Ships in 10 - 15 working days

This book is based on the author's Ph.D. dissertation 56]. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias."

Cartesian Genetic Programming (Hardcover, Edition.): Julian F. Miller Cartesian Genetic Programming (Hardcover, Edition.)
Julian F. Miller
R3,075 Discovery Miles 30 750 Ships in 10 - 15 working days

Cartesian Genetic Programming (CGP) is a highly effective and increasingly popular form of genetic programming. It represents programs in the form of directed graphs, and a particular characteristic is that it has a highly redundant genotype-phenotype mapping, in that genes can be noncoding. It has spawned a number of new forms, each improving on the efficiency, among them modular, or embedded, CGP, and self-modifying CGP. It has been applied to many problems in both computer science and applied sciences. This book contains chapters written by the leading figures in the development and application of CGP, and it will be essential reading for researchers in genetic programming and for engineers and scientists solving applications using these techniques. It will also be useful for advanced undergraduates and postgraduates seeking to understand and utilize a highly efficient form of genetic programming.

Embedded Analytics - Integrating Analysis with the Business Workflow (Paperback): Donald Farmer Embedded Analytics - Integrating Analysis with the Business Workflow (Paperback)
Donald Farmer
R1,056 Discovery Miles 10 560 Ships in 12 - 17 working days

Embedded Analytics is one of the hottest trends in business intelligence right now. It's being used in multiple ways to improve decision making, provide faster insights, gain competitive advantages and grow revenue. Over the last 10 years, data analytics and data visualization have become essential components of an enterprise information strategy. Nevertheless, despite this recognition, the adoption of data analytics has remained remarkably static - perhaps reaching no more than thirty percent of potential users. This book explores the most important techniques for taking that adoption further: embedding analytics into the workflow of our everyday operations.

Predicting the Dynamics of Research Impact (Hardcover, 1st ed. 2021): Yannis Manolopoulos, Thanasis Vergoulis Predicting the Dynamics of Research Impact (Hardcover, 1st ed. 2021)
Yannis Manolopoulos, Thanasis Vergoulis
R5,030 Discovery Miles 50 300 Ships in 12 - 17 working days

This book provides its readers with an introduction to interesting prediction and science dynamics problems in the field of Science of Science. Prediction focuses on the forecasting of future performance (or impact) of an entity, either a research article or a scientist, and also the prediction of future links in collaboration networks or identifying missing links in citation networks. The single chapters are written in a way that help the reader gain a detailed technical understanding of the corresponding subjects, the strength and weaknesses of the state-of-the-art approaches for each described problem, and the currently open challenges. While chapter 1 provides a useful contribution in the theoretical foundations of the fields of scientometrics and science of science, chapters 2-4 turn the focal point to the study of factors that affect research impact and its dynamics. Chapters 5-7 then focus on article-level measures that quantify the current and future impact of scientific articles. Next, chapters 8-10 investigate subjects relevant to predicting the future impact of individual researchers. Finally, chapters 11-13 focus on science evolution and dynamics, leveraging heterogeneous and interconnected data, where the analysis of research topic trends and their evolution has always played a key role in impact prediction approaches and quantitative analyses in the field of bibliometrics. Each chapter can be read independently, since it includes a detailed description of the problem being investigated along with a thorough discussion and study of the respective state-of-the-art. Due to the cross-disciplinary character of the Science of Science field, the book may be useful to interested readers from a variety of disciplines like information science, information retrieval, network science, informetrics, scientometrics, and machine learning, to name a few. The profiles of the readers may also be diverse ranging from researchers and professors in the respective fields to students and developers being curious about the covered subjects.

Optimization for Data Analysis (Hardcover): Stephen J Wright, Benjamin Recht Optimization for Data Analysis (Hardcover)
Stephen J Wright, Benjamin Recht
R1,321 R1,246 Discovery Miles 12 460 Save R75 (6%) Ships in 12 - 17 working days

Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.

Intelligent and Cloud Computing - Proceedings of ICICC 2019, Volume 2 (Hardcover, 1st ed. 2021): Debahuti Mishra, Rajkumar... Intelligent and Cloud Computing - Proceedings of ICICC 2019, Volume 2 (Hardcover, 1st ed. 2021)
Debahuti Mishra, Rajkumar Buyya, Prasant Mohapatra, Srikanta Patnaik
R4,727 Discovery Miles 47 270 Ships in 12 - 17 working days

This book features a collection of high-quality research papers presented at the International Conference on Intelligent and Cloud Computing (ICICC 2019), held at Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India, on December 20, 2019. Including contributions on system and network design that can support existing and future applications and services, it covers topics such as cloud computing system and network design, optimization for cloud computing, networking, and applications, green cloud system design, cloud storage design and networking, storage security, cloud system models, big data storage, intra-cloud computing, mobile cloud system design, real-time resource reporting and monitoring for cloud management, machine learning, data mining for cloud computing, data-driven methodology and architecture, and networking for machine learning systems.

Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning (Hardcover, 1st ed. 2023): Saeed Mian... Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning (Hardcover, 1st ed. 2023)
Saeed Mian Qaisar, Humaira Nisar, Abdulhamit Subasi
R5,389 Discovery Miles 53 890 Ships in 12 - 17 working days

This book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems.

Machine Learning for Business Analytics - Real-Time Data Analysis for Decision-Making (Paperback): Hemachandran K, Sayantan... Machine Learning for Business Analytics - Real-Time Data Analysis for Decision-Making (Paperback)
Hemachandran K, Sayantan Khanra, Raul V. Rodriguez, Juan Jaramillo
R1,670 Discovery Miles 16 700 Ships in 9 - 15 working days

Machine Learning is an integral tool in a business analyst's arsenal because the rate at which data is being generated from different sources is increasing and working on complex unstructured data is becoming inevitable. Data collection, data cleaning, and data mining are rapidly becoming more difficult to analyze than just importing information from a primary or secondary source. The machine learning model plays a crucial role in predicting the future performance and results of a company. In real-time, data collection and data wrangling are the important steps in deploying the models. Analytics is a tool for visualizing and steering data and statistics. Business analysts can work with different datasets -- choosing an appropriate machine learning model results in accurate analyzing, forecasting the future, and making informed decisions. The global machine learning market was valued at $1.58 billion in 2017 and is expected to reach $20.83 billion in 2024 -- growing at a CAGR of 44.06% between 2017 and 2024. The authors have compiled important knowledge on machine learning real-time applications in business analytics. This book enables readers to get broad knowledge in the field of machine learning models and to carry out their future research work. The future trends of machine learning for business analytics are explained with real case studies. Essentially, this book acts as a guide to all business analysts. The authors blend the basics of data analytics and machine learning and extend its application to business analytics. This book acts as a superb introduction and covers the applications and implications of machine learning. The authors provide first-hand experience of the applications of machine learning for business analytics in the section on real-time analysis. Case studies put the theory into practice so that you may receive hands-on experience with machine learning and data analytics. This book is a valuable source for practitioners, industrialists, technologists, and researchers.

Ontology of Communication - Agent-Based Data-Driven or Sign-Based Substitution-Driven? (Hardcover, 1st ed. 2023): Roland Hausser Ontology of Communication - Agent-Based Data-Driven or Sign-Based Substitution-Driven? (Hardcover, 1st ed. 2023)
Roland Hausser
R4,664 Discovery Miles 46 640 Ships in 12 - 17 working days

The book gives a comprehensive discussion of Database Semantics (DBS) as an agent-based data-driven theory of how natural language communication essentially works. In language communication, agents switch between speak mode, driven by cognition-internal content (input) resulting in cognition-external raw data (e.g. sound waves or pixels, which have no meaning or grammatical properties but can be measured by natural science), and hear mode, driven by the raw data produced by the speaker resulting in cognition-internal content. The motivation is to compare two approaches for an ontology of communication: agent-based data-driven vs. sign-based substitution-driven. Agent-based means: design of a cognitive agent with (i) an interface component for converting raw data into cognitive content (recognition) and converting cognitive content into raw data (action), (ii) an on-board, content-addressable memory (database) for the storage and content retrieval, (iii) separate treatments of the speak and the hear mode. Data-driven means: (a) mapping a cognitive content as input to the speak-mode into a language-dependent surface as output, (b) mapping a surface as input to the hear-mode into a cognitive content as output. Oppositely, sign-based means: no distinction between speak and hear mode, whereas substitution-driven means: using a single start symbol as input for generating infinitely many outputs, based on substitutions by rewrite rules. Collecting recent research of the author, this beautiful, novel and original exposition begins with an introduction to DBS, makes a linguistic detour on subject/predicate gapping and slot-filler repetition, and moves on to discuss computational pragmatics, inference and cognition, grammatical disambiguation and other related topics. The book is mostly addressed to experts working in the field of computational linguistics, as well as to enthusiasts interested in the history and early development of this subject, starting with the pre-computational foundations of theoretical computer science and symbolic logic in the 30s.

Machine Learning for Data Science Handbook - Data Mining and Knowledge Discovery Handbook (Hardcover, 3rd ed. 2023): Lior... Machine Learning for Data Science Handbook - Data Mining and Knowledge Discovery Handbook (Hardcover, 3rd ed. 2023)
Lior Rokach, Oded Maimon, Erez Shmueli
R7,866 Discovery Miles 78 660 Ships in 12 - 17 working days

This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Machine Learning and Deep Learning in…
Mehul Mahrishi, Kamal Kant Hiran, … Hardcover R7,692 Discovery Miles 76 920
Cognitive Robotics and Adaptive…
Maki K. Habib Hardcover R2,926 Discovery Miles 29 260
Machine Learning - Architecture in the…
Phil Bernstein Paperback R1,267 R1,175 Discovery Miles 11 750
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, … Hardcover R7,578 Discovery Miles 75 780
Deep Learning Applications: In Computer…
Qi Xuan, Yun Xiang, … Hardcover R2,985 Discovery Miles 29 850
Tree-Based Machine Learning Methods in…
Sharad Saxena Hardcover R2,211 Discovery Miles 22 110
Basic Python Commands - Learn the Basic…
Manuel Mcfeely Hardcover R891 R764 Discovery Miles 7 640
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain Hardcover R9,088 Discovery Miles 90 880
Makupedia
Peter K Matthews - Akukalia Hardcover R1,920 Discovery Miles 19 200
Get Started Programming with Python…
Manuel Mcfeely Hardcover R864 R743 Discovery Miles 7 430

 

Partners