![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
This book presents an exploration of linkages among soil-water, agriculture, and climate change with a special focus on thematic areas for assessment, mitigation, and management of natural resources under climate change conditions. This book covers advances in modelling approaches, including machine learning (ML)/ artificial intelligence (AI) applications; GIS and remote sensing; sensors; impacts of climate change on agriculture; subsurface water; contaminants; and socio-economic impacts, which are lacking in a more comprehensive manner in the previous titles. This book encompasses updated information as well as future directions for researchers working in the field of management of natural resources. The goal of this book is to provide scientific evidence to researchers and policymakers and end-to-end value chain practitioners which may help in reducing the overall adverse impacts of climate change on water resources and the related mitigation strategies. This book focuses on the knowledge, modern tools, and techniques, i.e., machine learning, artificial intelligence, etc. for soil-water, agriculture, and climate change. Further, nature-based solutions for management of natural resources with special targets on contaminants, extreme events, disturbances, etc. will be targeted. The book provides readers with the enhanced knowledge for application of engineering principles and economic and regulatory constraints to determine a soil-water, agriculture production action strategy, and select appropriate technologies to implement the strategy for a given data set at a site. It would also cover the application of laboratory, modeling, numerical methods for determination and forecasting of climate change impacts, agriculture production, pollution, soil health, etc. Overall, it provides hydrologists, environmental engineers, administrators, policy makers, consultants, and industrial experts with essential support in effective management of soils health, agricultural productions, and mitigation of extreme climatic events.
This book describes important methodologies, tools and techniques from the fields of artificial intelligence, basically those which are based on relevant conceptual and formal development. The coverage is wide, ranging from machine learning to the use of data on the Semantic Web, with many new topics. The contributions are concerned with machine learning, big data, data processing in medicine, similarity processing in ontologies, semantic image analysis, as well as many applications including the use of machine leaning techniques for cloud security, artificial intelligence techniques for detecting COVID-19, the Internet of things, etc. The book is meant to be a very important and useful source of information for researchers and doctoral students in data analysis, Semantic Web, big data, machine learning, computer engineering and related disciplines, as well as for postgraduate students who want to integrate the doctoral cycle.
This book intends to report the new results of the efforts on the study of Layered Intelligence of the Machine Brain (LIMB). The book collects novel research ideas in LIMB and summarizes the current machine intelligence level as "five layer intelligence"- environments sensing, active learning, cognitive computing, intelligent decision making and automatized execution. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms, and applications of LIMB.
This book provides a systematic and comprehensive overview of machine learning with cognitive science methods and technologies which have played an important role at the core of practical solutions for a wide scope of tasks between handheld apps, industrial process control, autonomous vehicles, environmental policies, life sciences, playing computer games, computational theory, and engineering development. The chapters in this book focus on readers interested in machine learning, cognitive and neuro-inspired computational systems - theories, mechanisms, and architecture, which underline human and animal behaviour, and their application to conscious and intelligent systems. In the current version, it focuses on the successful implementation and step-by-step explanation of practical applications of the domain. It also offers a wide range of inspiring and interesting cutting-edge contributions to applications of machine learning and cognitive science such as healthcare products, medical electronics, and gaming. Overall, this book provides valuable information on effective, cutting-edge techniques and approaches for students, researchers, practitioners, and academicians working in the field of AI, neural network, machine learning, and cognitive science. Furthermore, the purpose of this book is to address the interests of a broad spectrum of practitioners, students, and researchers, who are interested in applying machine learning and cognitive science methods in their respective domains.
This book is a collection of best selected research papers presented at the Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020) held during October 22nd to 24th 2020, at the Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, India. The presented papers are grouped under the following topics (a) Machine Learning, Deep learning and Computational intelligence algorithms (b)Wireless communication systems and (c) Mobile data applications and are included in the book. The topics include the latest research and results in the areas of network prediction, traffic classification, call detail record mining, mobile health care, mobile pattern recognition, natural language processing, automatic speech processing, mobility analysis, indoor localization, wireless sensor networks (WSN), energy minimization, routing, scheduling, resource allocation, multiple access, power control, malware detection, cyber security, flooding attacks detection, mobile apps sniffing, MIMO detection, signal detection in MIMO-OFDM, modulation recognition, channel estimation, MIMO nonlinear equalization, super-resolution channel and direction-of-arrival estimation. The book is a rich reference material for academia and industry.
This book is the first comprehensive book about reservoir computing (RC). RC is a powerful and broadly applicable computational framework based on recurrent neural networks. Its advantages lie in small training data set requirements, fast training, inherent memory and high flexibility for various hardware implementations. It originated from computational neuroscience and machine learning but has, in recent years, spread dramatically, and has been introduced into a wide variety of fields, including complex systems science, physics, material science, biological science, quantum machine learning, optical communication systems, and robotics. Reviewing the current state of the art and providing a concise guide to the field, this book introduces readers to its basic concepts, theory, techniques, physical implementations and applications. The book is sub-structured into two major parts: theory and physical implementations. Both parts consist of a compilation of chapters, authored by leading experts in their respective fields. The first part is devoted to theoretical developments of RC, extending the framework from the conventional recurrent neural network context to a more general dynamical systems context. With this broadened perspective, RC is not restricted to the area of machine learning but is being connected to a much wider class of systems. The second part of the book focuses on the utilization of physical dynamical systems as reservoirs, a framework referred to as physical reservoir computing. A variety of physical systems and substrates have already been suggested and used for the implementation of reservoir computing. Among these physical systems which cover a wide range of spatial and temporal scales, are mechanical and optical systems, nanomaterials, spintronics, and quantum many body systems. This book offers a valuable resource for researchers (Ph.D. students and experts alike) and practitioners working in the field of machine learning, artificial intelligence, robotics, neuromorphic computing, complex systems, and physics.
This book presents the state-of-the-art applications of machine learning in the finance domain with a focus on financial product modeling, which aims to advance the model performance and minimize risk and uncertainty. It provides both practical and managerial implications of financial and managerial decision support systems which capture a broad range of financial data traits. It also serves as a guide for the implementation of risk-adjusted financial product pricing systems, while adding a significant supplement to the financial literacy of the investigated study. The book covers advanced machine learning techniques, such as Support Vector Machine, Neural Networks, Random Forest, K-Nearest Neighbors, Extreme Learning Machine, Deep Learning Approaches, and their application to finance datasets. It also leverages real-world financial instances to practice business product modeling and data analysis. Software code, such as MATLAB, Python and/or R including datasets within a broad range of financial domain are included for more rigorous practice. The book primarily aims at providing graduate students and researchers with a roadmap for financial data analysis. It is also intended for a broad audience, including academics, professional financial analysts, and policy-makers who are involved in forecasting, modeling, trading, risk management, economics, credit risk, and portfolio management.
This book introduces the point cloud; its applications in industry, and the most frequently used datasets. It mainly focuses on three computer vision tasks -- point cloud classification, segmentation, and registration -- which are fundamental to any point cloud-based system. An overview of traditional point cloud processing methods helps readers build background knowledge quickly, while the deep learning on point clouds methods include comprehensive analysis of the breakthroughs from the past few years. Brand-new explainable machine learning methods for point cloud learning, which are lightweight and easy to train, are then thoroughly introduced. Quantitative and qualitative performance evaluations are provided. The comparison and analysis between the three types of methods are given to help readers have a deeper understanding. With the rich deep learning literature in 2D vision, a natural inclination for 3D vision researchers is to develop deep learning methods for point cloud processing. Deep learning on point clouds has gained popularity since 2017, and the number of conference papers in this area continue to increase. Unlike 2D images, point clouds do not have a specific order, which makes point cloud processing by deep learning quite challenging. In addition, due to the geometric nature of point clouds, traditional methods are still widely used in industry. Therefore, this book aims to make readers familiar with this area by providing comprehensive overview of the traditional methods and the state-of-the-art deep learning methods. A major portion of this book focuses on explainable machine learning as a different approach to deep learning. The explainable machine learning methods offer a series of advantages over traditional methods and deep learning methods. This is a main highlight and novelty of the book. By tackling three research tasks -- 3D object recognition, segmentation, and registration using our methodology -- readers will have a sense of how to solve problems in a different way and can apply the frameworks to other 3D computer vision tasks, thus give them inspiration for their own future research. Numerous experiments, analysis and comparisons on three 3D computer vision tasks (object recognition, segmentation, detection and registration) are provided so that readers can learn how to solve difficult Computer Vision problems.
Cartesian Genetic Programming (CGP) is a highly effective and increasingly popular form of genetic programming. It represents programs in the form of directed graphs, and a particular characteristic is that it has a highly redundant genotype-phenotype mapping, in that genes can be noncoding. It has spawned a number of new forms, each improving on the efficiency, among them modular, or embedded, CGP, and self-modifying CGP. It has been applied to many problems in both computer science and applied sciences. This book contains chapters written by the leading figures in the development and application of CGP, and it will be essential reading for researchers in genetic programming and for engineers and scientists solving applications using these techniques. It will also be useful for advanced undergraduates and postgraduates seeking to understand and utilize a highly efficient form of genetic programming.
This book presents applications of machine learning techniques in processing multimedia large-scale data. Multimedia such as text, image, audio, video, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling comprehensive visual classification to fill the semantic gap by exploring large-scale data, offering a promising frontier for detailed multimedia understanding, as well as extract patterns and making effective decisions by analyzing the large collection of data.
Humans have the most advanced method of communication, which is known as natural language. While humans can use computers to send voice and text messages to each other, computers do not innately know how to process natural language. In recent years, deep learning has primarily transformed the perspectives of a variety of fields in artificial intelligence (AI), including speech, vision, and natural language processing (NLP). The extensive success of deep learning in a wide variety of applications has served as a benchmark for the many downstream tasks in AI. The field of computer vision has taken great leaps in recent years and surpassed humans in tasks related to detecting and labeling objects thanks to advances in deep learning and neural networks. Deep Learning Research Applications for Natural Language Processing explains the concepts and state-of-the-art research in the fields of NLP, speech, and computer vision. It provides insights into using the tools and libraries in Python for real-world applications. Covering topics such as deep learning algorithms, neural networks, and advanced prediction, this premier reference source is an excellent resource for computational linguists, software engineers, IT managers, computer scientists, students and faculty of higher education, libraries, researchers, and academicians.
This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem-oriented chapters. The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks. Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.
This book is written for software product teams that use AI to add intelligent models to their products or are planning to use it. As AI adoption grows, it is becoming important that all AI driven products can demonstrate they are not introducing any bias to the AI-based decisions they are making, as well as reducing any pre-existing bias or discrimination. The responsibility to ensure that the AI models are ethical and make responsible decisions does not lie with the data scientists alone. The product owners and the business analysts are as important in ensuring bias-free AI as the data scientists on the team. This book addresses the part that these roles play in building a fair, explainable and accountable model, along with ensuring model and data privacy. Each chapter covers the fundamentals for the topic and then goes deep into the subject matter - providing the details that enable the business analysts and the data scientists to implement these fundamentals. AI research is one of the most active and growing areas of computer science and statistics. This book includes an overview of the many techniques that draw from the research or are created by combining different research outputs. Some of the techniques from relevant and popular libraries are covered, but deliberately not drawn very heavily from as they are already well documented, and new research is likely to replace some of it.
This book aims to solve some key problems in the decision and optimization procedure for power market organizers and participants in data-driven approaches. It begins with an overview of the power market data and analyzes on their characteristics and importance for market clearing. Then, the first part of the book discusses the essential problem of bus load forecasting from the perspective of market organizers. The related works include load uncertainty modeling, bus load bad data correction, and monthly load forecasting. The following part of the book answers how much information can be obtained from public data in locational marginal price (LMP)-based markets. It introduces topics such as congestion identification, componential price forecasting, quantifying the impact of forecasting error, and financial transmission right investment. The final part of the book answers how to model the complex market bidding behaviors. Specific works include pattern extraction, aggregated supply curve forecasting, market simulation, and reward function identification in bidding. These methods are especially useful for market organizers to understand the bidding behaviors of market participants and make essential policies. It will benefit and inspire researchers, graduate students, and engineers in the related fields.
Visual Question Answering (VQA) usually combines visual inputs like image and video with a natural language question concerning the input and generates a natural language answer as the output. This is by nature a multi-disciplinary research problem, involving computer vision (CV), natural language processing (NLP), knowledge representation and reasoning (KR), etc. Further, VQA is an ambitious undertaking, as it must overcome the challenges of general image understanding and the question-answering task, as well as the difficulties entailed by using large-scale databases with mixed-quality inputs. However, with the advent of deep learning (DL) and driven by the existence of advanced techniques in both CV and NLP and the availability of relevant large-scale datasets, we have recently seen enormous strides in VQA, with more systems and promising results emerging. This book provides a comprehensive overview of VQA, covering fundamental theories, models, datasets, and promising future directions. Given its scope, it can be used as a textbook on computer vision and natural language processing, especially for researchers and students in the area of visual question answering. It also highlights the key models used in VQA.
This book presents a summary of artificial intelligence and machine learning techniques in its first two chapters. The remaining chapters of the book provide everything one must know about the basic artificial intelligence to modern machine intelligence techniques including the hybrid computational intelligence technique, using the concepts of several real-life solved examples, design of projects and research ideas. The solved examples with more than 200 illustrations presented in the book are a great help to instructors, students, non-AI professionals, and researchers. Each example is discussed in detail with encoding, normalization, architecture, detailed design, process flow, and sample input/output. Summary of the fundamental concepts with solved examples is a unique combination and highlight of this book.
Lifelong learning addresses situations in which a learner faces a series of different learning tasks providing the opportunity for synergy among them. Explanation-based neural network learning (EBNN) is a machine learning algorithm that transfers knowledge across multiple learning tasks. When faced with a new learning task, EBNN exploits domain knowledge accumulated in previous learning tasks to guide generalization in the new one. As a result, EBNN generalizes more accurately from less data than comparable methods. Explanation-Based Neural Network Learning: A Lifelong Learning Approach describes the basic EBNN paradigm and investigates it in the context of supervised learning, reinforcement learning, robotics, and chess. The paradigm of lifelong learning - using earlier learned knowledge to improve subsequent learning - is a promising direction for a new generation of machine learning algorithms. Given the need for more accurate learning methods, it is difficult to imagine a future for machine learning that does not include this paradigm.' From the Foreword by Tom M. Mitchell.
This book describes a novel machine-learning based approach to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure. It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.
Computational Architectures Integrating Neural and Symbolic Processes: A Perspective on the State of the Art focuses on a currently emerging body of research. With the reemergence of neural networks in the 1980s with their emphasis on overcoming some of the limitations of symbolic AI, there is clearly a need to support some form of high-level symbolic processing in connectionist networks. As argued by many researchers, on both the symbolic AI and connectionist sides, many cognitive tasks, e.g. language understanding and common sense reasoning, seem to require high-level symbolic capabilities. How these capabilities are realized in connectionist networks is a difficult question and it constitutes the focus of this book. Computational Architectures Integrating Neural and Symbolic Processes addresses the underlying architectural aspects of the integration of neural and symbolic processes. In order to provide a basis for a deeper understanding of existing divergent approaches and provide insight for further developments in this field, this book presents: (1) an examination of specific architectures (grouped together according to their approaches), their strengths and weaknesses, why they work, and what they predict, and (2) a critique/comparison of these approaches. Computational Architectures Integrating Neural and Symbolic Processes is of interest to researchers, graduate students, and interested laymen, in areas such as cognitive science, artificial intelligence, computer science, cognitive psychology, and neurocomputing, in keeping up-to-date with the newest research trends. It is a comprehensive, in-depth introduction to this new emerging field.
A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain's ability to generalize in optimization - particularly in population-based evolutionary algorithms - have received little attention to date. Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems, each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks. This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.
This book provides a coherent and complete overview of various Question Answering (QA) systems. It covers three main categories based on the source of the data that can be unstructured text (TextQA), structured knowledge graphs (KBQA), and the combination of both. Developing a QA system usually requires using a combination of various important techniques, including natural language processing, information retrieval and extraction, knowledge graph processing, and machine learning. After a general introduction and an overview of the book in Chapter 1, the history of QA systems and the architecture of different QA approaches are explained in Chapter 2. It starts with early close domain QA systems and reviews different generations of QA up to state-of-the-art hybrid models. Next, Chapter 3 is devoted to explaining the datasets and the metrics used for evaluating TextQA and KBQA. Chapter 4 introduces the neural and deep learning models used in QA systems. This chapter includes the required knowledge of deep learning and neural text representation models for comprehending the QA models over text and QA models over knowledge base explained in Chapters 5 and 6, respectively. In some of the KBQA models the textual data is also used as another source besides the knowledge base; these hybrid models are studied in Chapter 7. In Chapter 8, a detailed explanation of some well-known real applications of the QA systems is provided. Eventually, open issues and future work on QA are discussed in Chapter 9. This book delivers a comprehensive overview on QA over text, QA over knowledge base, and hybrid QA systems which can be used by researchers starting in this field. It will help its readers to follow the state-of-the-art research in the area by providing essential and basic knowledge.
This book discusses the interplay between statistics, data science, machine learning and artificial intelligence, with a focus on environmental science, the natural sciences, and technology. It covers the state of the art from both a theoretical and a practical viewpoint and describes how to successfully apply machine learning methods, demonstrating the benefits of statistics for modeling and analyzing high-dimensional and big data. The book's expert contributions include theoretical studies of machine learning methods, expositions of general methodologies for sound statistical analyses of data as well as novel approaches to modeling and analyzing data for specific problems and areas. In terms of applications, the contributions deal with data as arising in industrial quality control, autonomous driving, transportation and traffic, chip manufacturing, photovoltaics, football, transmission of infectious diseases, Covid-19 and public health. The book will appeal to statisticians and data scientists, as well as engineers and computer scientists working in related fields or applications.
Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the need to incorporate heterogeneous structural (graph) information consisting of multiple types of node and edge, but also the need to consider heterogeneous attributes or types of content (e.g. text or image) associated with each node. Although considerable advances have been made in homogeneous (and heterogeneous) graph embedding, attributed graph embedding and graph neural networks, few are capable of simultaneously and effectively taking into account heterogeneous structural (graph) information as well as the heterogeneous content information of each node. In this book, we provide a comprehensive survey of current developments in HG representation learning. More importantly, we present the state-of-the-art in this field, including theoretical models and real applications that have been showcased at the top conferences and journals, such as TKDE, KDD, WWW, IJCAI and AAAI. The book has two major objectives: (1) to provide researchers with an understanding of the fundamental issues and a good point of departure for working in this rapidly expanding field, and (2) to present the latest research on applying heterogeneous graphs to model real systems and learning structural features of interaction systems. To the best of our knowledge, it is the first book to summarize the latest developments and present cutting-edge research on heterogeneous graph representation learning. To gain the most from it, readers should have a basic grasp of computer science, data mining and machine learning.
This volume presents the current status of software development in the field of computational and theoretical chemistry and gives an overview of the emerging trends. The challenges of maintaining the legacy codes and their adaptation to the rapidly growing hardware capabilities and the new programming environments are surveyed in a series of topical reviews written by the core developers and maintainers of the popular quantum chemistry and molecular dynamics programs. Special emphasis is given to new computational methodologies and practical aspects of their implementation and application in the computational chemistry codes. Modularity of the computational chemistry software is an emerging concept that enables to bypass the development and maintenance bottleneck of the legacy software and to customize the software using the best available computational procedures implemented in the form of self-contained modules. Perspectives on modular design of the computer programs for modeling molecular electronic structure, non-adiabatic dynamics, kinetics, as well as for data visualization are presented by the researchers actively working in the field of software development and application. This volume is of interest to quantum and computational chemists as well as experimental chemists actively using and developing computational software for their research. Chapters "MLatom 2: An Integrative Platform for Atomistic Machine Learning" and "Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol" are available open access under a CC BY 4.0 License via link.springer.com.
Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians, practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields. |
You may like...
The Routledge Handbook of Accounting…
Martin Quinn, Erik Strauss
Hardcover
R6,368
Discovery Miles 63 680
|