0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (5)
  • R250 - R500 (28)
  • R500+ (2,330)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

The Elements of Hawkes Processes (Hardcover, 1st ed. 2021): Patrick J. Laub, Young Lee, Thomas Taimre The Elements of Hawkes Processes (Hardcover, 1st ed. 2021)
Patrick J. Laub, Young Lee, Thomas Taimre
R3,261 Discovery Miles 32 610 Ships in 12 - 17 working days

Hawkes processes are studied and used in a wide range of disciplines: mathematics, social sciences, and earthquake modelling, to name a few. This book presents a selective coverage of the core and recent topics in the broad field of Hawkes processes. It consists of three parts. Parts I and II summarise and provide an overview of core theory (including key simulation methods) and inference methods, complemented by a selection of recent research developments and applications. Part III is devoted to case studies in seismology and finance that connect the core theory and inference methods to practical scenarios. This book is designed primarily for applied probabilists, statisticians, and machine learners. However, the mathematical prerequisites have been kept to a minimum so that the content will also be of interest to undergraduates in advanced mathematics and statistics, as well as machine learning practitioners. Knowledge of matrix theory with basics of probability theory, including Poisson processes, is considered a prerequisite. Colour-blind-friendly illustrations are included.

Machine Learning Risk Assessments in Criminal Justice Settings (Hardcover, 1st ed. 2019): Richard Berk Machine Learning Risk Assessments in Criminal Justice Settings (Hardcover, 1st ed. 2019)
Richard Berk
R4,316 Discovery Miles 43 160 Ships in 12 - 17 working days

This book puts in one place and in accessible form Richard Berk's most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk. Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than "predictive policing" for locations in time and space, which is a very different enterprise that uses different data different data analysis tools. The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.

Machine Learning Paradigms - Artificial Immune Systems and their Applications in Software Personalization (Hardcover, 1st ed.... Machine Learning Paradigms - Artificial Immune Systems and their Applications in Software Personalization (Hardcover, 1st ed. 2017)
Dionisios N. Sotiropoulos, George A. Tsihrintzis
R4,905 R3,736 Discovery Miles 37 360 Save R1,169 (24%) Ships in 12 - 17 working days

The topic of this monograph falls within the, so-called, biologically motivated computing paradigm, in which biology provides the source of models and inspiration towards the development of computational intelligence and machine learning systems. Specifically, artificial immune systems are presented as a valid metaphor towards the creation of abstract and high level representations of biological components or functions that lay the foundations for an alternative machine learning paradigm. Therefore, focus is given on addressing the primary problems of Pattern Recognition by developing Artificial Immune System-based machine learning algorithms for the problems of Clustering, Classification and One-Class Classification. Pattern Classification, in particular, is studied within the context of the Class Imbalance Problem. The main source of inspiration stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems that is exceptionally evolved in order to continuously address an extremely unbalanced pattern classification problem, namely, the self / non-self discrimination process. The experimental results presented in this monograph involve a wide range of degenerate binary classification problems where the minority class of interest is to be recognized against the vast volume of the majority class of negative patterns. In this context, Artificial Immune Systems are utilized for the development of personalized software as the core mechanism behind the implementation of Recommender Systems. The book will be useful to researchers, practitioners and graduate students dealing with Pattern Recognition and Machine Learning and their applications in Personalized Software and Recommender Systems. It is intended for both the expert/researcher in these fields, as well as for the general reader in the field of Computational Intelligence and, more generally, Computer Science who wishes to learn more about the field of Intelligent Computing Systems and its applications. An extensive list of bibliographic references at the end of each chapter guides the reader to probe further into application area of interest to him/her.

Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings (Hardcover, 1st ed.... Applying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings (Hardcover, 1st ed. 2019)
Thuy T. Pham
R3,020 Discovery Miles 30 200 Ships in 10 - 15 working days

This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.

Applications of Machine Learning (Hardcover, 1st ed. 2020): Prashant Johri, Jitendra Kumar Verma, Sudip Paul Applications of Machine Learning (Hardcover, 1st ed. 2020)
Prashant Johri, Jitendra Kumar Verma, Sudip Paul
R4,900 Discovery Miles 49 000 Ships in 10 - 15 working days

This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Feature Selection and Ensemble Methods for Bioinformatics - Algorithmic Classification and Implementations (Hardcover, New):... Feature Selection and Ensemble Methods for Bioinformatics - Algorithmic Classification and Implementations (Hardcover, New)
Oleg Okun
R6,981 Discovery Miles 69 810 Ships in 10 - 15 working days

Machine learning is the branch of artificial intelligence whose goal is to develop algorithms that add learning capabilities to computers. Ensembles are an integral part of machine learning. A typical ensemble includes several algorithms performing the task of prediction of the class label or the degree of class membership for a given input presented as a set of measurable characteristics, often called features. Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations offers a unique perspective on machine learning aspects of microarray gene expression based cancer classification. This multidisciplinary text is at the intersection of computer science and biology and, as a result, can be used as a reference book by researchers and students from both fields. Each chapter describes the process of algorithm design from beginning to end and aims to inform readers of best practices for use in their own research.

Machine Learning Technologies and Applications - Proceedings of ICACECS 2020 (Hardcover, 1st ed. 2021): C. Kiran Mai, A.... Machine Learning Technologies and Applications - Proceedings of ICACECS 2020 (Hardcover, 1st ed. 2021)
C. Kiran Mai, A. Brahmananda Reddy, K Srujan Raju
R4,626 Discovery Miles 46 260 Ships in 10 - 15 working days

This book comprises the best deliberations with the theme "Machine Learning Technologies and Applications" in the "International Conference on Advances in Computer Engineering and Communication Systems (ICACECS 2020)," organized by the Department of Computer Science and Engineering, VNR Vignana Jyothi Institute of Engineering and Technology. The book provides insights into the recent trends and developments in the field of computer science with a special focus on the machine learning and big data. The book focuses on advanced topics in artificial intelligence, machine learning, data mining and big data computing, cloud computing, Internet of things, distributed computing and smart systems.

Machine Learning Techniques for Adaptive Multimedia Retrieval - Technologies Applications and Perspectives (Hardcover):... Machine Learning Techniques for Adaptive Multimedia Retrieval - Technologies Applications and Perspectives (Hardcover)
Chia-Hung Wei
R5,218 Discovery Miles 52 180 Ships in 12 - 17 working days

Machine Learning Techniques for Adaptive Multimedia Retrieval: Technologies Applications and Perspectives disseminates current information on multimedia retrieval, advances the field of multimedia databases, and educates the multimedia database community. It is a critical text for professionals who are engaged in efforts to understand machine learning techniques for adaptive multimedia retrieval research, design and applications.

Proceedings of ELM-2015 Volume 1 - Theory, Algorithms and Applications (I) (Hardcover, 1st ed. 2016): Jiuwen Cao, Kezhi Mao,... Proceedings of ELM-2015 Volume 1 - Theory, Algorithms and Applications (I) (Hardcover, 1st ed. 2016)
Jiuwen Cao, Kezhi Mao, Jonathan Wu, Amaury Lendasse
R8,071 R7,120 Discovery Miles 71 200 Save R951 (12%) Ships in 12 - 17 working days

This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.

Higgs Boson Decays into a Pair of Bottom Quarks - Observation with the ATLAS Detector and Machine Learning Applications... Higgs Boson Decays into a Pair of Bottom Quarks - Observation with the ATLAS Detector and Machine Learning Applications (Hardcover, 1st ed. 2021)
Cecilia Tosciri
R4,829 Discovery Miles 48 290 Ships in 10 - 15 working days

The discovery in 2012 of the Higgs boson at the Large Hadron Collider (LHC) represents a milestone for the Standard Model (SM) of particle physics. Most of the SM Higgs production and decay rates have been measured at the LHC with increased precision. However, despite its experimental success, the SM is known to be only an effective manifestation of a more fundamental description of nature. The scientific research at the LHC is strongly focused on extending the SM by searching, directly or indirectly, for indications of New Physics. The extensive physics program requires increasingly advanced computational and algorithmic techniques. In the last decades, Machine Learning (ML) methods have made a prominent appearance in the field of particle physics, and promise to address many challenges faced by the LHC. This thesis presents the analysis that led to the observation of the SM Higgs boson decay into pairs of bottom quarks. The analysis exploits the production of a Higgs boson associated with a vector boson whose signatures enable efficient triggering and powerful background reduction. The main strategy to maximise the signal sensitivity is based on a multivariate approach. The analysis is performed on a dataset corresponding to a luminosity of 79.8/fb collected by the ATLAS experiment during Run-2 at a centre-of-mass energy of 13 TeV. An excess of events over the expected background is found with an observed (expected) significance of 4.9 (4.3) standard deviation. A combination with results from other \Hbb searches provides an observed (expected) significance of 5.4 (5.5). The corresponding ratio between the signal yield and the SM expectation is 1.01 +- 0.12 (stat.)+ 0.16-0.15(syst.). The 'observation' analysis was further extended to provide a finer interpretation of the V H(H bb) signal measurement. The cross sections for the VH production times the H bb branching ratio have been measured in exclusive regions of phase space. These measurements are used to search for possible deviations from the SM with an effective field theory approach, based on anomalous couplings of the Higgs boson. The results of the cross-section measurements, as well as the constraining of the operators that affect the couplings of the Higgs boson to the vector boson and the bottom quarks, have been documented and discussed in this thesis. This thesis also describes a novel technique for the fast simulation of the forward calorimeter response, based on similarity search methods. Such techniques constitute a branch of ML and include clustering and indexing methods that enable quick and efficient searches for vectors similar to each other. The new simulation approach provides optimal results in terms of detector resolution response and reduces the computational requirements of a standard particles simulation.

Rule Based Systems for Big Data - A Machine Learning Approach (Hardcover, 1st ed. 2015): Han Liu, Alexander Gegov, Mihaela Cocea Rule Based Systems for Big Data - A Machine Learning Approach (Hardcover, 1st ed. 2015)
Han Liu, Alexander Gegov, Mihaela Cocea
R3,782 R3,493 Discovery Miles 34 930 Save R289 (8%) Ships in 12 - 17 working days

The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.

Amazon Comprehend Developer Guide (Hardcover): Documentation Team Amazon Comprehend Developer Guide (Hardcover)
Documentation Team
R1,007 Discovery Miles 10 070 Ships in 10 - 15 working days
Hardware-Aware Probabilistic Machine Learning Models - Learning, Inference and Use Cases (Hardcover, 1st ed. 2021): Laura... Hardware-Aware Probabilistic Machine Learning Models - Learning, Inference and Use Cases (Hardcover, 1st ed. 2021)
Laura Isabel Galindez Olascoaga, Wannes Meert, Marian Verhelst
R2,503 Discovery Miles 25 030 Ships in 10 - 15 working days

This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumption and performance of the machine learning task, with the overarching goal of balancing the two optimally. The book first motivates extreme-edge computing in the context of the Internet of Things (IoT) paradigm. Then, it briefly reviews the steps involved in the execution of a machine learning task and identifies the implications associated with implementing this type of workload in resource-constrained devices. The core of this book focuses on augmenting and exploiting the properties of Bayesian Networks and Probabilistic Circuits in order to endow them with hardware-awareness. The proposed models can encode the properties of various device sub-systems that are typically not considered by other resource-aware strategies, bringing about resource-saving opportunities that traditional approaches fail to uncover. The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples show the potential of attaining significant resource-saving opportunities with minimal accuracy losses at application time. Overall, this book constitutes a novel approach to hardware-algorithm co-optimization that further bridges the fields of Machine Learning and Electrical Engineering.

Computer-Aided Analysis of Gastrointestinal Videos (Hardcover, 1st ed. 2021): Jorge Bernal, Aymeric Histace Computer-Aided Analysis of Gastrointestinal Videos (Hardcover, 1st ed. 2021)
Jorge Bernal, Aymeric Histace
R4,580 Discovery Miles 45 800 Ships in 10 - 15 working days

This book opens with an introduction to the main purpose and tasks of the GIANA challenge, as well as a summary and an analysis of the results and performance obtained by the 20 participating teams. The early and accurate diagnosis of gastrointestinal diseases is critical for increasing the chances of patient survival, and efficient screening is vital for locating precursor lesions. Video colonoscopy and wireless capsule endoscopy (WCE) are the gold-standard tools for colon and intestinal tract screening, respectively. Yet these tools still present some drawbacks, such as lesion miss rate, lack of in vivo diagnosis capabilities, and perforation risk. To mitigate these, computer-aided detection/diagnosis systems can play a key role in assisting clinicians in the different stages of the exploration. This book presents the latest, state-of-the-art approaches in this field, and also tackles the clinical considerations required to efficiently deploy these systems in the exploration room. The coverage draws upon results from the Gastrointestinal Image Analysis (GIANA) Challenge, part of the EndoVis satellite events of the conferences MICCAI 2017 and 2018. Each method proposed to address the different subtasks of the challenges is detailed in a separate chapter, offering a deep insight into this topic of interest for public health. This book appeals to researchers, practitioners, and lecturers spanning both the computer vision and gastroenterology communities.

Twin Support Vector Machines - Models, Extensions and Applications (Hardcover, 1st ed. 2017): Jayadeva, Reshma Khemchandani,... Twin Support Vector Machines - Models, Extensions and Applications (Hardcover, 1st ed. 2017)
Jayadeva, Reshma Khemchandani, Suresh Chandra
R4,476 R3,600 Discovery Miles 36 000 Save R876 (20%) Ships in 12 - 17 working days

This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on "Additional Topics" has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.

Dynamic Resource Management in Service-Oriented Core Networks (Hardcover, 1st ed. 2021): Weihua Zhuang, Kaige Qu Dynamic Resource Management in Service-Oriented Core Networks (Hardcover, 1st ed. 2021)
Weihua Zhuang, Kaige Qu
R3,966 Discovery Miles 39 660 Ships in 12 - 17 working days

This book provides a timely and comprehensive study of dynamic resource management for network slicing in service-oriented fifth-generation (5G) and beyond core networks. This includes the perspective of developing efficient computation resource provisioning and scheduling solutions to guarantee consistent service performance in terms of end-to-end (E2E) data delivery delay. Network slicing is enabled by the software defined networking (SDN) and network function virtualization (NFV) paradigms. For a network slice with a target traffic load, the E2E service delivery is enabled by virtual network function (VNF) placement and traffic routing with static resource allocations. When data traffic enters the network, the traffic load is dynamic and can deviate from the target value, potentially leading to QoS performance degradation and network congestion. Data traffic has dynamics in different time granularities. For example, the traffic statistics (e.g., mean and variance) can be non-stationary and experience significant changes in a coarse time granularity, which are usually predictable. Within a long time duration with stationary traffic statistics, there are traffic dynamics in small timescales, which are usually highly bursty and unpredictable. To provide continuous QoS performance guarantee and ensure efficient and fair operation of the network slices over time, it is essential to develop dynamic resource management schemes for the embedded services in the presence of traffic dynamics during virtual network operation. Queueing theory is used in system modeling, and different techniques including optimization and machine learning are applied to solving the dynamic resource management problems. Based on a simplified M/M/1 queueing model with Poisson traffic arrivals, an optimization model for flow migration is presented to accommodate the large-timescale changes in the average traffic rates with average E2E delay guarantee, while addressing a trade-off between load balancing and flow migration overhead. To overcome the limitations of Poisson traffic model, the authors present a machine learning approach for dynamic VNF resource scaling and migration. The new solution captures the inherent traffic patterns in a real-world traffic trace with non-stationary traffic statistics in large timescale, predicts resource demands for VNF resource scaling, and triggers adaptive VNF migration decision making, to achieve load balancing, migration cost reduction, and resource overloading penalty suppression in the long run. Both supervised and unsupervised machine learning tools are investigated for dynamic resource management. To accommodate the traffic dynamics in small time granularities, the authors present a dynamic VNF scheduling scheme to coordinate the scheduling among VNFs of multiple services, which achieves network utility maximization with delay guarantee for each service. Researchers and graduate students working in the areas of electrical engineering, computing engineering and computer science will find this book useful as a reference or secondary text. Professionals in industry seeking solutions to dynamic resource management for 5G and beyond networks will also want to purchase this book.

Machine Learning in Complex Networks (Hardcover, 1st ed. 2016): Thiago Christiano Silva, Liang Zhao Machine Learning in Complex Networks (Hardcover, 1st ed. 2016)
Thiago Christiano Silva, Liang Zhao
R5,145 Discovery Miles 51 450 Ships in 12 - 17 working days

This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.

Design of Experiments for Reinforcement Learning (Hardcover, 2015 ed.): Christopher Gatti Design of Experiments for Reinforcement Learning (Hardcover, 2015 ed.)
Christopher Gatti
R3,026 Discovery Miles 30 260 Ships in 10 - 15 working days

This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge. The author approaches these entities using design of experiments not commonly employed to study machine learning methods. The results outlined in this work provide insight as to what enables and what has an effect on successful reinforcement learning implementations so that this learning method can be applied to more challenging problems.

Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods (Hardcover, 1st ed.... Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods (Hardcover, 1st ed. 2019)
Sarah Vluymans
R3,044 Discovery Miles 30 440 Ships in 10 - 15 working days

This book presents novel classification algorithms for four challenging prediction tasks, namely learning from imbalanced, semi-supervised, multi-instance and multi-label data. The methods are based on fuzzy rough set theory, a mathematical framework used to model uncertainty in data. The book makes two main contributions: helping readers gain a deeper understanding of the underlying mathematical theory; and developing new, intuitive and well-performing classification approaches. The authors bridge the gap between the theoretical proposals of the mathematical model and important challenges in machine learning. The intended readership of this book includes anyone interested in learning more about fuzzy rough set theory and how to use it in practical machine learning contexts. Although the core audience chiefly consists of mathematicians, computer scientists and engineers, the content will also be interesting and accessible to students and professionals from a range of other fields.

Machine Learning Techniques for Gait Biometric Recognition - Using the Ground Reaction Force (Hardcover, 1st ed. 2016): James... Machine Learning Techniques for Gait Biometric Recognition - Using the Ground Reaction Force (Hardcover, 1st ed. 2016)
James Eric Mason, Issa Traore, Isaac Woungang
R4,245 R2,063 Discovery Miles 20 630 Save R2,182 (51%) Ships in 12 - 17 working days

This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book * introduces novel machine-learning-based temporal normalization techniques * bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition * provides detailed discussions of key research challenges and open research issues in gait biometrics recognition* compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear

Machine Learning Applications in Non-Conventional Machining Processes (Hardcover): Goutam Kumar Bose, Pritam Pain Machine Learning Applications in Non-Conventional Machining Processes (Hardcover)
Goutam Kumar Bose, Pritam Pain
R6,076 Discovery Miles 60 760 Ships in 10 - 15 working days

Traditional machining has many limitations in today's technology-driven world, which has caused industrial professionals to begin implementing various optimization techniques within their machining processes. The application of methods including machine learning and genetic algorithms has recently transformed the manufacturing industry and created countless opportunities in non-traditional machining methods. Significant research in this area, however, is still considerably lacking. Machine Learning Applications in Non-Conventional Machining Processes is a collection of innovative research on the advancement of intelligent technology in industrial environments and its applications within the manufacturing field. While highlighting topics including evolutionary algorithms, micro-machining, and artificial neural networks, this book is ideally designed for researchers, academicians, engineers, managers, developers, practitioners, industrialists, and students seeking current research on intelligence-based machining processes in today's technology-driven market.

Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems - MCCS 2019... Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems - MCCS 2019 (Hardcover, 1st ed. 2021)
Vijay Nath, J K Mandal
R6,143 Discovery Miles 61 430 Ships in 10 - 15 working days

This book presents high-quality papers from the Fourth International Conference on Microelectronics, Computing & Communication Systems (MCCS 2019). It discusses the latest technological trends and advances in MEMS and nanoelectronics, wireless communication, optical communication, instrumentation, signal processing, image processing, bioengineering, green energy, hybrid vehicles, environmental science, weather forecasting, cloud computing, renewable energy, RFID, CMOS sensors, actuators, transducers, telemetry systems, embedded systems and sensor network applications. It includes papers based on original theoretical, practical and experimental simulations, development, applications, measurements and testing. The applications and solutions discussed here provide excellent reference material for future product development.

Lectures on the Nearest Neighbor Method (Hardcover, 1st ed. 2015): Gerard Biau, Luc Devroye Lectures on the Nearest Neighbor Method (Hardcover, 1st ed. 2015)
Gerard Biau, Luc Devroye
R3,387 R2,529 Discovery Miles 25 290 Save R858 (25%) Ships in 12 - 17 working days

This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods. Gerard Biau is a professor at Universite Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).

Biomedical Image Analysis and Machine Learning Technologies - Applications and Techniques (Hardcover): Biomedical Image Analysis and Machine Learning Technologies - Applications and Techniques (Hardcover)
R7,019 Discovery Miles 70 190 Ships in 10 - 15 working days

Medical images are at the base of many routine clinical decisions and their influence continues to increase in many fields of medicine. Since the last decade, computers have become an invaluable tool for supporting medical image acquisition, processing, organization and analysis. Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques provides a panorama of the current boundary between biomedical complexity coming from the medical image context and the multiple techniques which have been used for solving many of these problems. This innovative publication serves as a leading industry reference as well as a source of creative ideas for applications of medical issues.

Machine Learning with Health Care Perspective - Machine Learning and Healthcare (Hardcover, 1st ed. 2020): Vishal Jain,... Machine Learning with Health Care Perspective - Machine Learning and Healthcare (Hardcover, 1st ed. 2020)
Vishal Jain, Jyotirmoy Chatterjee
R4,694 Discovery Miles 46 940 Ships in 12 - 17 working days

This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
From Servants to Workers - South African…
Shireen Ally Paperback R90 R84 Discovery Miles 840
Sitting Pretty - White Afrikaans Women…
Christi van der Westhuizen Paperback  (1)
R365 R337 Discovery Miles 3 370
Jojo - Finally Home
Johannes Radebe Paperback R422 Discovery Miles 4 220
See What You Made Me Do - Power, Control…
Jess Hill Hardcover R799 Discovery Miles 7 990
Contemporary Plays by African Women…
Yvette Hutchison, Amy Jephta Paperback R866 Discovery Miles 8 660
Perplexing Patriarchies: Fatherhood…
Pierre Islam Hardcover R1,824 Discovery Miles 18 240
Becoming
Michelle Obama Hardcover  (6)
R791 R679 Discovery Miles 6 790
Miss Behave
Malebo Sephodi Paperback  (12)
R302 Discovery Miles 3 020
Quit Like A Woman - The Radical Choice…
Holly Whitaker Paperback R516 R448 Discovery Miles 4 480
The Light We Carry - Overcoming In…
Michelle Obama Hardcover  (1)
R399 R368 Discovery Miles 3 680

 

Partners