![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Entering the field of artificial intelligence and data science can seem daunting to beginners with little to no prior background, especially those with no programming experience. The concepts used in self-driving cars and virtual assistants like Amazon's Alexa may seem very complex and difficult to grasp. The aim of Artificial Intelligence in Python is to make AI accessible and easy to understand for people with little to no programming experience though practical exercises. Newcomers will gain the necessary knowledge on how to create such systems, which are capable of executing tasks that require some form of human-like intelligence. This book introduces readers to various topics and examples of programming in Python, as well as key concepts in artificial intelligence. Python programming skills will be imparted as we go along. Concepts and code snippets will be covered in a step-by-step manner, to guide and instill confidence in beginners. Complex subjects in deep learning and machine learning will be broken down into easy-to-digest content and examples. Artificial intelligence implementations will also be shared, allowing beginners to generate their own artificial intelligence algorithms for reinforcement learning, style transfer, chatbots, speech, and natural language processing.
Memory, Consciousness, and Temporality presents the argument that current memory theories are undermined by two false assumptions: the memory trace paradox' and the fallacy of the homunculus'. In these pages Gianfranco Dalla Barba introduces a hypothesis - the Memory, Consciousness, and Temporality (MCT) hypothesis - on the relationship between memory and consciousness that is not undermined by these assumptions and further demonstrates how MCT can account for a variety of memory disorders and phenomena. With a unique approach intended to conjugate phenomenological analysis and recent neuropsychological data, the author makes an important contribution to our understanding of the central issues in current cognitive science and cognitive neuroscience.
Effective Data Science Infrastructure is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data driven companies to manage their cutting edge data infrastructure. As you work through this easy-to-follow guide, you'll set up end-to end infrastructure from the ground up, with a fully customizable process you can easily adapt to your company. You'll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python. Throughout, you'll follow a human-centric approach focused on user experience and meeting the unique needs of data scientists. About the Technology Turning data science projects from small prototypes to sustainable business processes requires scalable and reliable infrastructure. This book lays out the workflows, components, and methods of the full infrastructure stack for data science, from data warehousing and scalable compute to modeling frameworks.
This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
This book involves a collection of selected papers presented at International Conference on Machine Learning and Autonomous Systems (ICMLAS 2021), held in Tamil Nadu, India, during 24-25 September 2021. It includes novel and innovative work from experts, practitioners, scientists and decision-makers from academia and industry. It covers selected papers in the area of emerging modern mobile robotic systems and intelligent information systems and autonomous systems in agriculture, health care, education, military and industries.
This book gives a comprehensive view of graph theory in informational retrieval (IR) and natural language processing(NLP). This book provides number of graph techniques for IR and NLP applications with examples. It also provides understanding of graph theory basics, graph algorithms and networks using graph. The book is divided into three parts and contains nine chapters. The first part gives graph theory basics and graph networks, and the second part provides basics of IR with graph-based information retrieval. The third part covers IR and NLP recent and emerging applications with case studies using graph theory. This book is unique in its way as it provides a strong foundation to a beginner in applying mathematical structure graph for IR and NLP applications. All technical details that include tools and technologies used for graph algorithms and implementation in Information Retrieval and Natural Language Processing with its future scope are explained in a clear and organized format.
Someday computers will be artists. They'll be able to write amusing
and original stories, invent and play games of unsurpassed
complexity and inventiveness, tell jokes and suffer writer's block.
But these things will require computers that can both achieve
artistic goals and be creative. Both capabilities are far from
accomplished.
This monograph offers an original broad and very diverse exploration of the seriation domain in data analysis, together with building a specific relation to clustering.Relative to a data table crossing a set of objects and a set of descriptive attributes, the search for orders which correspond respectively to these two sets is formalized mathematically and statistically. State-of-the-art methods are created and compared with classical methods and a thorough understanding of the mutual relationships between these methods is clearly expressed. The authors distinguish two families of methods: Geometric representation methods Algorithmic and Combinatorial methods Original and accurate methods are provided in the framework for both families. Their basis and comparison is made on both theoretical and experimental levels. The experimental analysis is very varied and very comprehensive. Seriation in Combinatorial and Statistical Data Analysis has a unique character in the literature falling within the fields of Data Analysis, Data Mining and Knowledge Discovery. It will be a valuable resource for students and researchers in the latter fields.
This book provides a valuable combination of relevant research works on developing smart city ecosystem from the artificial intelligence (AI) and Internet of things (IoT) perspective. The technical research works presented here are focused on a number of aspects of smart cities: smart mobility, smart living, smart environment, smart citizens, smart government, and smart waste management systems as well as related technologies and concepts. This edited book offers critical insight to the key underlying research themes within smart cities, highlighting the limitations of current developments and potential future directions.
Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models' performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.
Humans have the most advanced method of communication, which is known as natural language. While humans can use computers to send voice and text messages to each other, computers do not innately know how to process natural language. In recent years, deep learning has primarily transformed the perspectives of a variety of fields in artificial intelligence (AI), including speech, vision, and natural language processing (NLP). The extensive success of deep learning in a wide variety of applications has served as a benchmark for the many downstream tasks in AI. The field of computer vision has taken great leaps in recent years and surpassed humans in tasks related to detecting and labeling objects thanks to advances in deep learning and neural networks. Deep Learning Research Applications for Natural Language Processing explains the concepts and state-of-the-art research in the fields of NLP, speech, and computer vision. It provides insights into using the tools and libraries in Python for real-world applications. Covering topics such as deep learning algorithms, neural networks, and advanced prediction, this premier reference source is an excellent resource for computational linguists, software engineers, IT managers, computer scientists, students and faculty of higher education, libraries, researchers, and academicians.
This book provides a comprehensive introduction to processing-in-memory (PIM) technology, from its architectures to circuits implementations on multiple memory types and describes how it can be a viable computer architecture in the era of AI and big data. The authors summarize the challenges of AI hardware systems, processing-in-memory (PIM) constraints and approaches to derive system-level requirements for a practical and feasible PIM solution. The presentation focuses on feasible PIM solutions that can be implemented and used in real systems, including architectures, circuits, and implementation cases for each major memory type (SRAM, DRAM, and ReRAM).
The juxtaposition of 'machine learning' and 'pure mathematics and theoretical physics' may first appear as contradictory in terms. The rigours of proofs and derivations in the latter seem to reside in a different world from the randomness of data and statistics in the former. Yet, an often under-appreciated component of mathematical discovery, typically not presented in a final draft, is experimentation: both with ideas and with mathematical data. Think of the teenage Gauss, who conjectured the Prime Number Theorem by plotting the prime-counting function, many decades before complex analysis was formalized to offer a proof.Can modern technology in part mimic Gauss's intuition? The past five years saw an explosion of activity in using AI to assist the human mind in uncovering new mathematics: finding patterns, accelerating computations, and raising conjectures via the machine learning of pure, noiseless data. The aim of this book, a first of its kind, is to collect research and survey articles from experts in this emerging dialogue between theoretical mathematics and machine learning. It does not dwell on the well-known multitude of mathematical techniques in deep learning, but focuses on the reverse relationship: how machine learning helps with mathematics. Taking a panoramic approach, the topics range from combinatorics to number theory, and from geometry to quantum field theory and string theory. Aimed at PhD students as well as seasoned researchers, each self-contained chapter offers a glimpse of an exciting future of this symbiosis.
This is the first book primarily dedicated to clustering using multiobjective genetic algorithms with extensive real-life applications in data mining and bioinformatics. The authors first offer detailed introductions to the relevant techniques - genetic algorithms, multiobjective optimization, soft computing, data mining and bioinformatics. They then demonstrate systematic applications of these techniques to real-world problems in the areas of data mining, bioinformatics and geoscience. The authors offer detailed theoretical and statistical notes, guides to future research, and chapter summaries. The book can be used as a textbook and as a reference book by graduate students and academic and industrial researchers in the areas of soft computing, data mining, bioinformatics and geoscience.
This book highlights recent advance in the area of Machine Learning and IoT, and their applications to solve societal issues/problems or useful for various users in the society. It is known that many smart devices are interconnected and the data generated is being analyzed and processed with machine learning models for prediction, classification, etc., to solve human needs in various sectors like health, road safety, agriculture, and education. This contributed book puts together chapters concerning the use of intelligent techniques in various aspects related to the IoT domain from protocols to applications, to give the reader an up-to-date picture of the state-of-the-art on the connection between computational intelligence, machine learning, and IoT.
Written in accessible language without mathematical formulas, this short book provides an overview of the wide and varied applications of artificial intelligence (AI) across the spectrum of physical sciences. Focusing in particular on AI's ability to extract patterns from data, known as machine learning (ML), the book includes a chapter on important machine learning algorithms and their respective applications in physics. It then explores the use of ML across a number of important sub-fields in more detail, ranging from particle, molecular and condensed matter physics, to astrophysics, cosmology and the theory of everything. The book covers such applications as the search for new particles and the detection of gravitational waves from the merging of black holes, and concludes by discussing what the future may hold.
This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs' theoretical developments and their applications.
For some time, all branches of the military have used a wide range of sensors to provide data for many purposes, including surveillance, reconnoitring, target detection and battle damage assessment. Many nations have also attempted to utilise these sensors for civilian applications, such as crop monitoring, agricultural disease tracking, environmental diagnostics, cartography, ocean temperature profiling, urban planning, and the characterisation of the Ozone Hole above Antarctica. The recent convergence of several important technologies has made possible new, advanced, high performance, sensor based applications relying on the near-simultaneous fusion of data from an ensemble of different types of sensors. The book examines the underlying principles of sensor operation and data fusion, the techniques and technologies that enable the process, including the operation of 'fusion engines'. Fundamental theory and the enabling technologies of data fusion are presented in a systematic and accessible manner. Applications are discussed in the areas of medicine, meteorology, BDA and targeting, transportation, cartography, the environment, agriculture, and manufacturing and process control.
Quantum-enhanced machine learning refers to quantum algorithms that solve tasks in machine learning, thereby improving a classical machine learning method. Such algorithms typically require one to encode the given classical dataset into a quantum computer, so as to make it accessible for quantum information processing. After this, quantum information processing routines can be applied and the result of the quantum computation is read out by measuring the quantum system. While many proposals of quantum machine learning algorithms are still purely theoretical and require a full-scale universal quantum computer to be tested, others have been implemented on small-scale or special purpose quantum devices.
This book collects different methodologies that permit metaheuristics and machine learning to solve real-world problems. This book has exciting chapters that employ evolutionary and swarm optimization tools combined with machine learning techniques. The fields of applications are from distribution systems until medical diagnosis, and they are also included different surveys and literature reviews that will enrich the reader. Besides, cutting-edge methods such as neuroevolutionary and IoT implementations are presented in some chapters. In this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and can be used in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the material can be helpful for research from the evolutionary computation, artificial intelligence communities.
This book provides tools and algorithms for solving a wide class of optimization tasks by learning from their repetitions. A unified framework is provided for learning algorithms that are based on the stochastic gradient (a golden standard in learning), including random simultaneous perturbations and the response surface the methodology. Original algorithms include model-free learning of short decision sequences as well as long sequences-relying on model-supported gradient estimation. Learning is based on whole sequences of a process observation that are either vectors or images. This methodology is applicable to repetitive processes, covering a wide range from (additive) manufacturing to decision making for COVID-19 waves mitigation. A distinctive feature of the algorithms is learning between repetitions-this idea extends the paradigms of iterative learning and run-to-run control. The main ideas can be extended to other decision learning tasks, not included in this book. The text is written in a comprehensible way with the emphasis on a user-friendly presentation of the algorithms, their explanations, and recommendations on how to select them. The book is expected to be of interest to researchers, Ph.D., and graduate students in computer science and engineering, operations research, decision making, and those working on the iterative learning control.
This book evaluates the role of innovative machine learning and deep learning methods in dealing with power system issues, concentrating on recent developments and advances that improve planning, operation, and control of power systems. Cutting-edge case studies from around the world consider prediction, classification, clustering, and fault/event detection in power systems, providing effective and promising solutions for many novel challenges faced by power system operators. Written by leading experts, the book will be an ideal resource for researchers and engineers working in the electrical power engineering and power system planning communities, as well as students in advanced graduate-level courses.
This volumes presents the proceedings of the FASMI 2020 conference, held at Taipei Veterans General Hospital on November 20-22, 2020. It presents contributions on all aspects of molecular imaging, discovered by leading academic scientists and researchers. It also provides a premier interdisciplinary treatment of recent innovations, trend, and concerns as well as practical challenges and solutions in Molecular Imaging and put an emphasis on Artificial Intelligence applied to Imaging Data. FASMI is the annual meeting of the Federation of Asian Societies for Molecular Imaging
Multimedia Streaming in SDN/NFV and 5G Networks A comprehensive overview of Quality of Experience control and management of multimedia services in future networks In Multimedia Streaming in SDN/NFV and 5G Networks, renowned researchers deliver a high-level exploration of Quality of Experience (QoE) control and management solutions for multimedia services in future softwarized and virtualized 5G networks. The book offers coverage of network softwarization and virtualization technologies, including SDN, NFV, MEC, and Fog/Cloud Computing, as critical elements for the management of multimedia services in future networks, like 5G and 6G networks and beyond. Providing a fulsome examination of end-to-end QoE control and management solutions in softwarized and virtualized networks, the book concludes with discussions of probable future challenges and research directions in emerging multimedia services and applications, 5G network management and orchestration, network slicing and collaborative service management of multimedia services in softwarized networks, and QoE-oriented business models. The distinguished authors also explore: Thorough introductions to 5G networks, including definitions and requirements, as well as Quality of Experience management of multimedia streaming services Comprehensive explorations of multimedia streaming services over the internet and network softwarization and virtualization in future networks Practical discussions of QoE management using SDN and NFV in future networks, as well as QoE management of multimedia services in emerging architectures, including MEC, ICN, and Fog/Cloud Computing In-depth examinations of QoE in emerging applications, 5G network slicing architectures and implementations, and 5G network slicing orchestration and resource management Perfect for researchers and engineers in multimedia services and telecoms, Multimedia Streaming in SDN/NFV and 5G Networks will also earn a place in the libraries of graduate and senior undergraduate students with interests in computer science, communication engineering, and telecommunication systems. |
![]() ![]() You may like...
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, …
Hardcover
R7,578
Discovery Miles 75 780
Research Anthology on Machine Learning…
Information R Management Association
Hardcover
R18,375
Discovery Miles 183 750
Data Analytics on Graphs
Ljubisa Stankovic, Danilo P. Mandic, …
Hardcover
R3,602
Discovery Miles 36 020
Artificial Intelligence and Machine…
Vagelis Plevris, Afaq Ahmad, …
Hardcover
R7,080
Discovery Miles 70 800
Machine Learning - Architecture in the…
Phil Bernstein
Paperback
Introduction to Statistical and Machine…
Carlos Andre Reis Pinheiro, Mike Patetta
Hardcover
R977
Discovery Miles 9 770
Deep Learning Applications: In Computer…
Qi Xuan, Yun Xiang, …
Hardcover
R2,985
Discovery Miles 29 850
|