0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (6)
  • R250 - R500 (27)
  • R500+ (2,305)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Handbook of Research on Applications and Implementations of Machine Learning Techniques (Hardcover): Sathiyamoorthi Velayutham Handbook of Research on Applications and Implementations of Machine Learning Techniques (Hardcover)
Sathiyamoorthi Velayutham
R8,886 Discovery Miles 88 860 Ships in 12 - 17 working days

Artificial intelligence is at the forefront of research and implementation in many industries including healthcare and agriculture. Whether it's detecting disease or generating algorithms, deep learning techniques are advancing exponentially. Researchers and professionals need a platform in which they can keep up with machine learning trends and their developments in the real world. The Handbook of Research on Applications and Implementations of Machine Learning Techniques provides innovative insights into the multi-disciplinary applications of machine learning algorithms for data analytics. The content within this publication examines disease identification, neural networks, and language support. It is designed for IT professionals, developers, data analysts, technology specialists, R&D professionals, industrialists, practitioners, researchers, academicians, and students seeking research on deep learning procedures and their enactments in the fields of medicine, engineering, and computer science.

Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection (Hardcover, 1st ed. 2020): Xuefeng Zhou,... Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection (Hardcover, 1st ed. 2020)
Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
R1,608 Discovery Miles 16 080 Ships in 12 - 17 working days

This open access book focuses on robot introspection, which has a direct impact on physical human-robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.

Cluster Analysis and Applications (Hardcover, 1st ed. 2021): Rudolf Scitovski, Kristian Sabo, Francisco Martinez Alvarez, Sime... Cluster Analysis and Applications (Hardcover, 1st ed. 2021)
Rudolf Scitovski, Kristian Sabo, Francisco Martinez Alvarez, Sime Ungar
R1,946 Discovery Miles 19 460 Ships in 10 - 15 working days

With the development of Big Data platforms for managing massive amount of data and wide availability of tools for processing these data, the biggest limitation is the lack of trained experts who are qualified to process and interpret the results. This textbook is intended for graduate students and experts using methods of cluster analysis and applications in various fields. Suitable for an introductory course on cluster analysis or data mining, with an in-depth mathematical treatment that includes discussions on different measures, primitives (points, lines, etc.) and optimization-based clustering methods, Cluster Analysis and Applications also includes coverage of deep learning based clustering methods. With clear explanations of ideas and precise definitions of concepts, accompanied by numerous examples and exercises together with Mathematica programs and modules, Cluster Analysis and Applications may be used by students and researchers in various disciplines, working in data analysis or data science.

First-order and Stochastic Optimization Methods for Machine Learning (Hardcover, 1st ed. 2020): Guanghui Lan First-order and Stochastic Optimization Methods for Machine Learning (Hardcover, 1st ed. 2020)
Guanghui Lan
R2,057 Discovery Miles 20 570 Ships in 12 - 17 working days

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Applications of Learning Classifier Systems (Hardcover, 2004 ed.): Larry Bull Applications of Learning Classifier Systems (Hardcover, 2004 ed.)
Larry Bull
R4,537 Discovery Miles 45 370 Ships in 12 - 17 working days

The field called Learning Classifier Systems is populated with romantics. Why shouldn't it be possible for computer programs to adapt, learn, and develop while interacting with their environments? In particular, why not systems that, like organic populations, contain competing, perhaps cooperating, entities evolving together? John Holland was one of the earliest scientists with this vision, at a time when so-called artificial intelligence was in its infancy and mainly concerned with preprogrammed systems that didn't learn. that, like organisms, had sensors, took Instead, Holland envisaged systems actions, and had rich self-generated internal structure and processing. In so doing he foresaw and his work prefigured such present day domains as reinforcement learning and embedded agents that are now displacing the older "standard Af' . One focus was what Holland called "classifier systems" sets of competing rule like "classifiers," each a hypothesis as to how best to react to some aspect of the environment--or to another rule. The system embracing such a rule "popu lation" would explore its available actions and responses, rewarding and rating the active rules accordingly. Then "good" classifiers would be selected and re produced, mutated and even crossed, a la Darwin and genetics, steadily and reliably increasing the system's ability to cope."

Innovative Supply Chain Management via Digitalization and Artificial Intelligence (Hardcover, 1st ed. 2022): Kumaresan Perumal,... Innovative Supply Chain Management via Digitalization and Artificial Intelligence (Hardcover, 1st ed. 2022)
Kumaresan Perumal, Chiranji Lal Chowdhary, Logan Chella
R4,469 Discovery Miles 44 690 Ships in 12 - 17 working days

This book focuses on the impact of artificial intelligence (AI) and machine learning (ML) models on supply chain operations in industry 4.0. The chapters illustrate the AI and ML models for all functional areas of operations in SCM. The book also includes examples using ML models like handling supply-to-demand imbalances, triggering automated responses, and reinforcing customer relationships. It describes the evolution of blockchain technology coupled with the ability to automate business logic for the transparency of goods, infrastructure, products, and licenses in software. The book also includes case studies that provide a problem statement and industry overcome by applying ML and AI technologies. This book is suitable for undergraduates, postgraduates, industrial professionals, business executives, entrepreneurs, and freelancers to encourage practical learning on AI and ML algorithms in SCM 4.0. Additionally, this book will provide computer science and information system professionals with the latest technologies embedded in the corporate world.

Analog Circuits for Machine Learning, Current/Voltage/Temperature Sensors, and High-speed Communication - Advances in Analog... Analog Circuits for Machine Learning, Current/Voltage/Temperature Sensors, and High-speed Communication - Advances in Analog Circuit Design 2021 (Hardcover, 1st ed. 2022)
Pieter Harpe, Kofi A. A. Makinwa, Andrea Baschirotto
R3,477 Discovery Miles 34 770 Ships in 12 - 17 working days

This book is based on the 18 tutorials presented during the 29th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, with specific contributions focusing on analog circuits for machine learning, current/voltage/temperature sensors, and high-speed communication via wireless, wireline, or optical links. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

Applied Machine Learning for Assisted Living (Hardcover, 1st ed. 2022): Zia Uddin Applied Machine Learning for Assisted Living (Hardcover, 1st ed. 2022)
Zia Uddin
R4,428 Discovery Miles 44 280 Ships in 10 - 15 working days

User care at home is a matter of great concern since unforeseen circumstances might occur that affect people's well-being. Technologies that assist people in independent living are essential for enhancing care in a cost-effective and reliable manner. Assisted care applications often demand real-time observation of the environment and the resident's activities using an event-driven system. As an emerging area of research and development, it is necessary to explore the approaches of the user care system in the literature to identify current practices for future research directions. Therefore, this book is aimed at a comprehensive review of data sources (e.g., sensors) with machine learning for various smart user care systems. To encourage the readers in the field, insights of practical essence of different machine learning algorithms with sensor data (e.g., publicly available datasets) are also discussed. Some code segments are also included to motivate the researchers of the related fields to practically implement the features and machine learning techniques. It is an effort to obtain knowledge of different types of sensor-based user monitoring technologies in-home environments. With the aim of adopting these technologies, research works, and their outcomes are reported. Besides, up to date references are included for the user monitoring technologies with the aim of facilitating independent living. Research that is related to the use of user monitoring technologies in assisted living is very widespread, but it is still consists mostly of limited-scale studies. Hence, user monitoring technology is a very promising field, especially for long-term care. However, monitoring of the users for smart assisted technologies should be taken to the next level with more detailed studies that evaluate and demonstrate their potential to contribute to prolonging the independent living of people. The target of this book is to contribute towards that direction.

Machine Learning for Sustainable Development (Hardcover): Kamal Kant Hiran, Deepak Khazanchi, Ajay Kumar Vyas, Sanjeevikumar... Machine Learning for Sustainable Development (Hardcover)
Kamal Kant Hiran, Deepak Khazanchi, Ajay Kumar Vyas, Sanjeevikumar Padmanaban
R4,083 Discovery Miles 40 830 Ships in 12 - 17 working days

The book will focus on the applications of machine learning for sustainable development. Machine learning (ML) is an emerging technique whose diffusion and adoption in various sectors (such as energy, agriculture, internet of things, infrastructure) will be of enormous benefit. The state of the art of machine learning models is most useful for forecasting and prediction of various sectors for sustainable development.

Mathematical Theories of Machine Learning - Theory and Applications (Hardcover, 1st ed. 2020): Bin Shi, S.S. Iyengar Mathematical Theories of Machine Learning - Theory and Applications (Hardcover, 1st ed. 2020)
Bin Shi, S.S. Iyengar
R2,617 Discovery Miles 26 170 Ships in 12 - 17 working days

This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.

Empirical Approach to Machine Learning (Hardcover, 1st ed. 2019): Plamen P. Angelov, Xiaowei Gu Empirical Approach to Machine Learning (Hardcover, 1st ed. 2019)
Plamen P. Angelov, Xiaowei Gu
R4,832 Discovery Miles 48 320 Ships in 12 - 17 working days

This book provides a 'one-stop source' for all readers who are interested in a new, empirical approach to machine learning that, unlike traditional methods, successfully addresses the demands of today's data-driven world. After an introduction to the fundamentals, the book discusses in depth anomaly detection, data partitioning and clustering, as well as classification and predictors. It describes classifiers of zero and first order, and the new, highly efficient and transparent deep rule-based classifiers, particularly highlighting their applications to image processing. Local optimality and stability conditions for the methods presented are formally derived and stated, while the software is also provided as supplemental, open-source material. The book will greatly benefit postgraduate students, researchers and practitioners dealing with advanced data processing, applied mathematicians, software developers of agent-oriented systems, and developers of embedded and real-time systems. It can also be used as a textbook for postgraduate coursework; for this purpose, a standalone set of lecture notes and corresponding lab session notes are available on the same website as the code. Dimitar Filev, Henry Ford Technical Fellow, Ford Motor Company, USA, and Member of the National Academy of Engineering, USA: "The book Empirical Approach to Machine Learning opens new horizons to automated and efficient data processing." Paul J. Werbos, Inventor of the back-propagation method, USA: "I owe great thanks to Professor Plamen Angelov for making this important material available to the community just as I see great practical needs for it, in the new area of making real sense of high-speed data from the brain." Chin-Teng Lin, Distinguished Professor at University of Technology Sydney, Australia: "This new book will set up a milestone for the modern intelligent systems." Edward Tunstel, President of IEEE Systems, Man, Cybernetics Society, USA: "Empirical Approach to Machine Learning provides an insightful and visionary boost of progress in the evolution of computational learning capabilities yielding interpretable and transparent implementations."

Advances in Computer Games - Many Games, Many Challenges (Hardcover, 2004 ed.): H. Jaap van den Herik, Hiroyuki Iida, Ernst A.... Advances in Computer Games - Many Games, Many Challenges (Hardcover, 2004 ed.)
H. Jaap van den Herik, Hiroyuki Iida, Ernst A. Heinz
R4,556 Discovery Miles 45 560 Ships in 12 - 17 working days

1 feel privileged that the J(jh Advances in Computer Games Conference (ACG 10) takes place in Graz, Styria, Austria. It is the frrst time that Austria acts as host country for this major event. The series of conferences started in Edinburgh, Scotland in 1975 and was then held four times in England, three times in The Netherlands, and once in Germany. The ACG-10 conference in Graz is special in that it is organised together with the 11th World Computer Chess Championship (WCCC), the Sth Computer Olympiad (CO), and the European Union Y outh Chess Championship. The 11 th WCCC and ACG 10 take place in the Dom im Berg (Dome in the Mountain), a high-tech space with multimedia equipment, located in the Schlossberg, in the centre of the city. The help of many sponsors (large and small) is gratefully acknowledged. They will make the organisation of this conference a success. In particular, 1 would like to thank the European Union for designating Graz as the Cultural Capital of Europe 2003. There are 24 accepted contributions by participants from all over the world: Europe, Japan, USA, and Canada. The specific research results ofthe ACG 10 are expected to tind their way to general applications. The results are described in the pages that follow. The international stature together with the technical importance of this conference reaffrrms the mandate of the International Computer Games Association (ICGA) to represent the computer-games community."

Reinforcement Learning From Scratch - Understanding Current Approaches - with Examples in Java and Greenfoot (Hardcover, 1st... Reinforcement Learning From Scratch - Understanding Current Approaches - with Examples in Java and Greenfoot (Hardcover, 1st ed. 2022)
Uwe Lorenz
R2,426 Discovery Miles 24 260 Ships in 10 - 15 working days

In ancient games such as chess or go, the most brilliant players can improve by studying the strategies produced by a machine. Robotic systems practice their own movements. In arcade games, agents capable of learning reach superhuman levels within a few hours. How do these spectacular reinforcement learning algorithms work? With easy-to-understand explanations and clear examples in Java and Greenfoot, you can acquire the principles of reinforcement learning and apply them in your own intelligent agents. Greenfoot (M.Koelling, King's College London) and the hamster model (D. Bohles, University of Oldenburg) are simple but also powerful didactic tools that were developed to convey basic programming concepts. The result is an accessible introduction into machine learning that concentrates on reinforcement learning. Taking the reader through the steps of developing intelligent agents, from the very basics to advanced aspects, touching on a variety of machine learning algorithms along the way, one is allowed to play along, experiment, and add their own ideas and experiments.

Machine Learning in Industry (Hardcover, 1st ed. 2022): Shubhabrata  Datta, J. Paulo Davim Machine Learning in Industry (Hardcover, 1st ed. 2022)
Shubhabrata Datta, J. Paulo Davim
R4,804 Discovery Miles 48 040 Ships in 12 - 17 working days

This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.

Advances and Innovations in Statistics and Data Science (Hardcover, 1st ed. 2022): Wenqing He, Liqun Wang, Jiahua Chen,... Advances and Innovations in Statistics and Data Science (Hardcover, 1st ed. 2022)
Wenqing He, Liqun Wang, Jiahua Chen, Chunfang Devon Lin
R4,148 Discovery Miles 41 480 Ships in 12 - 17 working days

This book highlights selected papers from the 4th ICSA-Canada Chapter Symposium, as well as invited articles from established researchers in the areas of statistics and data science. It covers a variety of topics, including methodology development in data science, such as methodology in the analysis of high dimensional data, feature screening in ultra-high dimensional data and natural language ranking; statistical analysis challenges in sampling, multivariate survival models and contaminated data, as well as applications of statistical methods. With this book, readers can make use of frontier research methods to tackle their problems in research, education, training and consultation.

Conformal Prediction for Reliable Machine Learning - Theory, Adaptations and Applications (Paperback): Vineeth Balasubramanian,... Conformal Prediction for Reliable Machine Learning - Theory, Adaptations and Applications (Paperback)
Vineeth Balasubramanian, Shen-Shyang Ho, Vladimir Vovk
R2,370 Discovery Miles 23 700 Ships in 12 - 17 working days

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. "Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications" captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems.
Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learningBe able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clusteringLearn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

Machine Learning - A Guide to Current Research (Hardcover, 1986 ed.): Tom M. Mitchell, Jaime G. Carbonell, Ryszard S. Michalski Machine Learning - A Guide to Current Research (Hardcover, 1986 ed.)
Tom M. Mitchell, Jaime G. Carbonell, Ryszard S. Michalski
R6,861 Discovery Miles 68 610 Ships in 12 - 17 working days

One of the currently most active research areas within Artificial Intelligence is the field of Machine Learning. which involves the study and development of computational models of learning processes. A major goal of research in this field is to build computers capable of improving their performance with practice and of acquiring knowledge on their own. The intent of this book is to provide a snapshot of this field through a broad. representative set of easily assimilated short papers. As such. this book is intended to complement the two volumes of Machine Learning: An Artificial Intelligence Approach (Morgan-Kaufman Publishers). which provide a smaller number of in-depth research papers. Each of the 77 papers in the present book summarizes a current research effort. and provides references to longer expositions appearing elsewhere. These papers cover a broad range of topics. including research on analogy. conceptual clustering. explanation-based generalization. incremental learning. inductive inference. learning apprentice systems. machine discovery. theoretical models of learning. and applications of machine learning methods. A subject index IS provided to assist in locating research related to specific topics. The majority of these papers were collected from the participants at the Third International Machine Learning Workshop. held June 24-26. 1985 at Skytop Lodge. Skytop. Pennsylvania. While the list of research projects covered is not exhaustive. we believe that it provides a representative sampling of the best ongoing work in the field. and a unique perspective on where the field is and where it is headed.

Machine Learning With Python: Theory And Applications (Hardcover): Gui-Rong Liu Machine Learning With Python: Theory And Applications (Hardcover)
Gui-Rong Liu
R3,963 Discovery Miles 39 630 Ships in 10 - 15 working days

Machine Learning (ML) has become a very important area of research widely used in various industries.This compendium introduces the basic concepts, fundamental theories, essential computational techniques, codes, and applications related to ML models. With a strong foundation, one can comfortably learn related topics, methods, and algorithms. Most importantly, readers with strong fundamentals can even develop innovative and more effective machine models for his/her problems. The book is written to achieve this goal.The useful reference text benefits professionals, academics, researchers, graduate and undergraduate students in AI, ML and neural networks.

Sensing, Data Managing, and Control Technologies for Agricultural Systems (Hardcover, 1st ed. 2022): Shaochun Ma, Tao Lin,... Sensing, Data Managing, and Control Technologies for Agricultural Systems (Hardcover, 1st ed. 2022)
Shaochun Ma, Tao Lin, Enrong Mao, Zhenghe Song, Kuan-Chong Ting
R5,155 Discovery Miles 51 550 Ships in 12 - 17 working days

Agricultural automation is the emerging technologies which heavily rely on computer-integrated management and advanced control systems. The tedious farming tasks had been taken over by agricultural machines in last century, in new millennium, computer-aided systems, automation, and robotics has been applied to precisely manage agricultural production system. With agricultural automation technologies, sustainable agriculture is being developed based on efficient use of land, increased conservation of water, fertilizer and energy resources. The agricultural automation technologies refer to related areas in sensing & perception, reasoning & learning, data communication, and task planning & execution. Since the literature on this diverse subject is widely scattered, it is necessary to review current status and capture the future challenges through a comprehensive monograph. In this book we focus on agricultural automation and provide critical reviews of advanced control technologies, their merits and limitations, application areas and research opportunities for further development. This collection thus serves as an authoritative treatise that can help researchers, engineers, educators, and students in the field of sensing, control, and automation technologies for production agriculture.

Synthetic Aperture Radar (SAR) Data Applications (Hardcover, 1st ed. 2023): Maciej Rysz, Arsenios Tsokas, Kathleen M. Dipple,... Synthetic Aperture Radar (SAR) Data Applications (Hardcover, 1st ed. 2023)
Maciej Rysz, Arsenios Tsokas, Kathleen M. Dipple, Kaitlin L. Fair, Panos M. Pardalos
R3,683 Discovery Miles 36 830 Ships in 10 - 15 working days

This carefully curated volume presents an in-depth, state-of-the-art discussion on many applications of Synthetic Aperture Radar (SAR). Integrating interdisciplinary sciences, the book features novel ideas, quantitative methods, and research results, promising to advance computational practices and technologies within the academic and industrial communities. SAR applications employ diverse and often complex computational methods rooted in machine learning, estimation, statistical learning, inversion models, and empirical models. Current and emerging applications of SAR data for earth observation, object detection and recognition, change detection, navigation, and interference mitigation are highlighted. Cutting edge methods, with particular emphasis on machine learning, are included. Contemporary deep learning models in object detection and recognition in SAR imagery with corresponding feature extraction and training schemes are considered. State-of-the-art neural network architectures in SAR-aided navigation are compared and discussed further. Advanced empirical and machine learning models in retrieving land and ocean information - wind, wave, soil conditions, among others, are also included.

Signal Processing and Machine Learning for Brain-Machine Interfaces (Hardcover): Toshihisa Tanaka, Mahnaz Arvaneh Signal Processing and Machine Learning for Brain-Machine Interfaces (Hardcover)
Toshihisa Tanaka, Mahnaz Arvaneh
R3,701 R3,312 Discovery Miles 33 120 Save R389 (11%) Ships in 10 - 15 working days

Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions. In this book an international panel of experts introduce signal processing and machine learning techniques for BMI/BCI and outline their practical and future applications in neuroscience, medicine, and rehabilitation, with a focus on EEG-based BMI/BCI methods and technologies. Topics covered include discriminative learning of connectivity pattern of EEG; feature extraction from EEG recordings; EEG signal processing; transfer learning algorithms in BCI; convolutional neural networks for event-related potential detection; spatial filtering techniques for improving individual template-based SSVEP detection; feature extraction and classification algorithms for image RSVP based BCI; decoding music perception and imagination using deep learning techniques; neurofeedback games using EEG-based Brain-Computer Interface Technology; affective computing system and more.

Data Analytics for Business - Lessons for Sales, Marketing, and Strategy (Hardcover): Ira J. Haimowitz Data Analytics for Business - Lessons for Sales, Marketing, and Strategy (Hardcover)
Ira J. Haimowitz
R3,776 Discovery Miles 37 760 Ships in 12 - 17 working days

* Essay-based format weaves together technical details and case studies to cut through complexity * Provides a strong background in business situations that companies face, to ensure that data analytics efforts are productively directed and organized * Appropriate for both business and engineering students who need to understand the data analytics lifecycle

Meta-Analytics - Consensus Approaches and System Patterns for Data Analysis (Paperback): Steven Simske Meta-Analytics - Consensus Approaches and System Patterns for Data Analysis (Paperback)
Steven Simske
R1,524 Discovery Miles 15 240 Ships in 12 - 17 working days

Meta-Analytics: Consensus Approaches and System Patterns for Data Analysis presents an exhaustive set of patterns for data science to use on any machine learning based data analysis task. The book virtually ensures that at least one pattern will lead to better overall system behavior than the use of traditional analytics approaches. The book is 'meta' to analytics, covering general analytics in sufficient detail for readers to engage with, and understand, hybrid or meta- approaches. The book has relevance to machine translation, robotics, biological and social sciences, medical and healthcare informatics, economics, business and finance. Inn addition, the analytics within can be applied to predictive algorithms for everyone from police departments to sports analysts.

Handbook of Computational Social Science for Policy (Hardcover, 1st ed. 2023): Eleonora Bertoni, Matteo Fontana, Lorenzo... Handbook of Computational Social Science for Policy (Hardcover, 1st ed. 2023)
Eleonora Bertoni, Matteo Fontana, Lorenzo Gabrielli, Serena Signorelli, Michele Vespe
R1,626 Discovery Miles 16 260 Ships in 12 - 17 working days

This open access handbook describes foundational issues, methodological approaches and examples on how to analyse and model data using Computational Social Science (CSS) for policy support. Up to now, CSS studies have mostly developed on a small, proof-of concept, scale that prevented from unleashing its potential to provide systematic impact to the policy cycle, as well as from improving the understanding of societal problems to the definition, assessment, evaluation, and monitoring of policies. The aim of this handbook is to fill this gap by exploring ways to analyse and model data for policy support, and to advocate the adoption of CSS solutions for policy by raising awareness of existing implementations of CSS in policy-relevant fields. To this end, the book explores applications of computational methods and approaches like big data, machine learning, statistical learning, sentiment analysis, text mining, systems modelling, and network analysis to different problems in the social sciences. The book is structured into three Parts: the first chapters on foundational issues open with an exposition and description of key policymaking areas where CSS can provide insights and information. In detail, the chapters cover public policy, governance, data justice and other ethical issues. Part two consists of chapters on methodological aspects dealing with issues such as the modelling of complexity, natural language processing, validity and lack of data, and innovation in official statistics. Finally, Part three describes the application of computational methods, challenges and opportunities in various social science areas, including economics, sociology, demography, migration, climate change, epidemiology, geography, and disaster management. The target audience of the book spans from the scientific community engaged in CSS research to policymakers interested in evidence-informed policy interventions, but also includes private companies holding data that can be used to study social sciences and are interested in achieving a policy impact.

Modern Approaches in Machine Learning & Cognitive Science: A Walkthrough (Hardcover, 1st ed. 2022): Vinit Kumar Gunjan, Jacek... Modern Approaches in Machine Learning & Cognitive Science: A Walkthrough (Hardcover, 1st ed. 2022)
Vinit Kumar Gunjan, Jacek M. Zurada
R5,181 Discovery Miles 51 810 Ships in 12 - 17 working days

This book provides a systematic and comprehensive overview of AI and machine learning which have got the ability to identify patterns in large and complex data sets. A remarkable success has been experienced in the last decade by emulating the brain computer interface. It presents the cognitive science methods and technologies that have played an important role at the core of practical solutions for a wide scope of tasks between handheld apps, industrial process control, autonomous vehicles, environmental policies, life sciences, playing computer games, computational theory, and engineering development. The chapters in this book focuses on audiences interested in machine learning, cognitive and neuro-inspired computational systems, their theories, mechanisms, and architecture, which underline human and animal behaviour, and their application to conscious and intelligent systems. In the current version, it focuses on the successful implementation and step-by-step explanation of practical applications of the domain. It also offers a wide range of inspiring and interesting cutting-edge contributions on applications of machine learning and cognitive science such as healthcare products, medical electronics, and gaming.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha Paperback R4,069 Discovery Miles 40 690
Machine Learning for Subsurface…
Siddharth Misra, Hao Li, … Paperback R2,931 Discovery Miles 29 310
Cognitive Robotics and Adaptive…
Maki K. Habib Hardcover R2,835 Discovery Miles 28 350
Deep Learning Applications
Pier Luigi Mazzeo, Paolo Spagnolo Hardcover R3,413 Discovery Miles 34 130
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, … Paperback R3,500 Discovery Miles 35 000
Multimedia Streaming in SDN/NFV and 5G…
Barakabitze Hardcover R3,142 Discovery Miles 31 420
Source Separation and Machine Learning
Jen-Tzung Chien Paperback R2,141 Discovery Miles 21 410
Machine Learning and Artificial…
Benjamin Moseley, Lion Krischer Hardcover R5,309 Discovery Miles 53 090
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, … Hardcover R7,369 Discovery Miles 73 690
Cognitive Data Models for Sustainable…
Siddhartha Bhattacharyya, Naba Kumar Mondal, … Paperback R2,864 Discovery Miles 28 640

 

Partners