![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Just over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data mining has sparked renewed interest in LCS. This book brings together work by a number of individuals who are demonstrating their good performance in a variety of domains. The first contribution is arranged as follows: Firstly, the main forms of LCS are described in some detail. A number of historical uses of LCS in data mining are then reviewed before an overview of the rest of the volume is presented. The rest of this book describes recent research on the use of LCS in the main areas of machine learning data mining: classification, clustering, time-series and numerical prediction, feature selection, ensembles, and knowledge discovery.
The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.
Someday computers will be artists. They'll be able to write amusing and original stories, invent and play games of unsurpassed complexity and inventiveness, tell jokes and suffer writer's block. But these things will require computers that can both achieve artistic goals and be creative. Both capabilities are far from accomplished. This book presents a theory of creativity that addresses some of the many hard problems which must be solved to build a creative computer. It also presents an exploration of the kinds of goals and plans needed to write simple short stories. These theories have been implemented in a computer program called MINSTREL which tells stories about King Arthur and his knights. While far from being the silicon author of the future, MINSTREL does illuminate many of the interesting and difficult issues involved in constructing a creative computer. The results presented here should be of interest to at least three different groups of people. Artificial intelligence researchers should find this work an interesting application of symbolic AI to the problems of story-telling and creativity. Psychologists interested in creativity and imagination should benefit from the attempt to build a detailed, explicit model of the creative process. Finally, authors and others interested in how people write should find MINSTREL's model of the author-level writing process thought-provoking.
Agricultural systems are uniquely complex systems, given that agricultural systems are parts of natural and ecological systems. Those aspects bring in a substantial degree of uncertainty in system operation. Also, impact factors, such as weather factors, are critical in agricultural systems but these factors are uncontrollable in system management. Modern agriculture has been evolving through precision agriculture beginning in the late 1980s and biotechnological innovations in the early 2000s. Precision agriculture implements site-specific crop production management by integrating agricultural mechanization and information technology in geographic information system (GIS), global navigation satellite system (GNSS), and remote sensing. Now, precision agriculture is set to evolve into smart agriculture with advanced systematization, informatization, intelligence and automation. From precision agriculture to smart agriculture, there is a substantial amount of specific control and communication problems that have been investigated and will continue to be studied. In this book, the core ideas and methods from control problems in agricultural production systems are extracted, and a system view of agricultural production is formulated for the analysis and design of management strategies to control and optimize agricultural production systems while exploiting the intrinsic feedback information-exchanging mechanisms. On this basis, the theoretical framework of agricultural cybernetics is established to predict and control the behavior of agricultural production systems through control theory.
This comprehensive and timely book, New Age Analytics: Transforming the Internet through Machine Learning, IoT, and Trust Modeling, explores the importance of tools and techniques used in machine learning, big data mining, and more. The book explains how advancements in the world of the web have been achieved and how the experiences of users can be analyzed. It looks at data gathering by the various electronic means and explores techniques for analysis and management, how to manage voluminous data, user responses, and more. This volume provides an abundance of valuable information for professionals and researchers working in the field of business analytics, big data, social network data, computer science, analytical engineering, and forensic analysis. Moreover, the book provides insights and support from both practitioners and academia in order to highlight the most debated aspects in the field.
This book features a collection of high-quality research papers presented at the International Conference on Intelligent and Cloud Computing (ICICC 2019), held at Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India, on December 20, 2019. Including contributions on system and network design that can support existing and future applications and services, it covers topics such as cloud computing system and network design, optimization for cloud computing, networking, and applications, green cloud system design, cloud storage design and networking, storage security, cloud system models, big data storage, intra-cloud computing, mobile cloud system design, real-time resource reporting and monitoring for cloud management, machine learning, data mining for cloud computing, data-driven methodology and architecture, and networking for machine learning systems.
This is the first rigorous, self-contained treatment of the theory of deep learning. Starting with the foundations of the theory and building it up, this is essential reading for any scientists, instructors, and students interested in artificial intelligence and deep learning. It provides guidance on how to think about scientific questions, and leads readers through the history of the field and its fundamental connections to neuroscience. The author discusses many applications to beautiful problems in the natural sciences, in physics, chemistry, and biomedicine. Examples include the search for exotic particles and dark matter in experimental physics, the prediction of molecular properties and reaction outcomes in chemistry, and the prediction of protein structures and the diagnostic analysis of biomedical images in the natural sciences. The text is accompanied by a full set of exercises at different difficulty levels and encourages out-of-the-box thinking.
"Foundations of Large-Scale Multimedia Information Management and Retrieval - Mathematics of Perception"" "covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions. The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval. Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Learn how to set up Kubeflow on a cloud provider or on an in-house cluster Train models using Kubeflow with popular tools including scikit-learn, TensorFlow, and Apache Spark Learn how to add custom stages such as serving and prediction Keep your model up-to-date with Kubeflow Pipelines Understand how to validate machine learning pipelines
Genetic Programming Theory and Practice III provides both researchers and industry professionals with the most recent developments in GP theory and practice by exploring the emerging interaction between theory and practice in the cutting-edge, machine learning method of Genetic Programming (GP). The contributions developed from a third workshop at the University of Michigan's Center for the Study of Complex Systems, where leading international genetic programming theorists from major universities and active practitioners from leading industries and businesses meet to examine and challenge how GP theory informs practice and how GP practice impacts GP theory. Applications are from a wide range of domains, including chemical process control, informatics, and circuit design, to name a few.
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning.
Machine Learning and Knowledge Discovery for Engineering Systems Health Management presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. With contributions from many top authorities on the subject, this volume is the first to bring together the two areas of machine learning and systems health management. Divided into three parts, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management. The first part of the text describes data-driven methods for anomaly detection, diagnosis, and prognosis of massive data streams and associated performance metrics. It also illustrates the analysis of text reports using novel machine learning approaches that help detect and discriminate between failure modes. The second part focuses on physics-based methods for diagnostics and prognostics, exploring how these methods adapt to observed data. It covers physics-based, data-driven, and hybrid approaches to studying damage propagation and prognostics in composite materials and solid rocket motors. The third part discusses the use of machine learning and physics-based approaches in distributed data centers, aircraft engines, and embedded real-time software systems. Reflecting the interdisciplinary nature of the field, this book shows how various machine learning and knowledge discovery techniques are used in the analysis of complex engineering systems. It emphasizes the importance of these techniques in managing the intricate interactions within and between the systems to maintain a high degree of reliability.
Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting. In Time Series Forecasting in Python you will learn how to: Recognize a time series forecasting problem and build a performant predictive model Create univariate forecasting models that account for seasonal effects and external variables Build multivariate forecasting models to predict many time series at once Leverage large datasets by using deep learning for forecasting time series Automate the forecasting process DESCRIPTION Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You'll explore interesting real-world datasets like Google's daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow.Time Series Forecasting in Python teaches you to apply time series forecasting and get immediate, meaningful predictions. You'll learn both traditional statistical and new deep learning models for time series forecasting, all fully illustrated with Python source code. Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You'll explore interesting real-world datasets like Google's daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow. about the technology Time series forecasting reveals hidden trends and makes predictions about the future from your data. This powerful technique has proven incredibly valuable across multiple fields-from tracking business metrics, to healthcare and the sciences. Modern Python libraries and powerful deep learning tools have opened up new methods and utilities for making practical time series forecasts. about the book Time Series Forecasting in Python teaches you to apply time series forecasting and get immediate, meaningful predictions. You'll learn both traditional statistical and new deep learning models for time series forecasting, all fully illustrated with Python source code. Test your skills with hands-on projects for forecasting air travel, volume of drug prescriptions, and the earnings of Johnson & Johnson. By the time you're done, you'll be ready to build accurate and insightful forecasting models with tools from the Python ecosystem.
The IMA Workshop on Evolutionary Algorithms brought together many of the top researchers in the area of Evolutionary Computation for a week of intensive interaction. The field of Evolutionary Computation has developed significantly over the past 30 years and today consists of a variety of subfields such as genetic algorithms, evolution strategies, evolutionary programming, and genetic programming, each with its own algorithmic perspectives and goals. The workshop did a great deal to clarify the current state of the theory of Evolutionary Algorithms. The existing theory might be characterized as deriving from two principal approaches. There is a high level macro-theory that looks at the processing of "building blocks" and "schemata" that are shared by many good solutions when searching a problem space. There is also a low level micro-theory that builds exact Markov models of the search process. It is sometimes hard for researchers working at such different levels of abstraction to interact. The IMA workshop allowed researchers working at these different levels to present their points of view and to move toward common ground. There was real progress in communication between theorists and practitioners in the evolutionary computation field. Speakers presented applications across a wide range of problem areas. In some of those cases, theoretically motivated methods work quite well. In other cases, practitioners used domain-based methods to obtain better performance than could be achieved by using a "pure" evolutionary algorithm. Individuals on both sides went away with a better appreciation of the successes and failures of current theory.
This book describes the use of machine learning techniques to build predictive models of uncertainty with application to hydrological models, focusing mainly on the development and testing of two different models. The first focuses on parameter uncertainty analysis by emulating the results of Monte Carlo simulation of hydrological models using efficient machine learning techniques. The second method aims at modelling uncertainty by building an ensemble of specialized machine learning models on the basis of past hydrological modela (TM)s performance. The book then demonstrates the capacity of machine learning techniques for building accurate and efficient predictive models of uncertainty.
Algorithmic Trading Methods: Applications using Advanced Statistics, Optimization, and Machine Learning Techniques, Second Edition, is a sequel to The Science of Algorithmic Trading and Portfolio Management. This edition includes new chapters on algorithmic trading, advanced trading analytics, regression analysis, optimization, and advanced statistical methods. Increasing its focus on trading strategies and models, this edition includes new insights into the ever-changing financial environment, pre-trade and post-trade analysis, liquidation cost & risk analysis, and compliance and regulatory reporting requirements. Highlighting new investment techniques, this book includes material to assist in the best execution process, model validation, quality and assurance testing, limit order modeling, and smart order routing analysis. Includes advanced modeling techniques using machine learning, predictive analytics, and neural networks. The text provides readers with a suite of transaction cost analysis functions packaged as a TCA library. These programming tools are accessible via numerous software applications and programming languages.
Image Modeling and Retrieval; E. Vicario. Efficient and Effective Nearest Neighbor Search in a Medical Image Database of Tumor Shapes; F. Korn, et al. Shape-Similarity-Based Retrieval in Image Databases; R. Mehrotra, J.E. Gary. Color Angular Indexing and Image Retrieval; G.D. Finlayson, et al. Indexing Color-Texture Image Patterns; A.D. Ventura, et al. Iconic Indexing for Visual Databases; Q-L. Zhang, S-K. Chang. Using Weighted Spatial Relationships in Retrieval by Visual Contents; A. Del Bimbo, et al.. Index.
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect ("Does altitude cause a change in atmospheric pressure, or vice versa?") is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a "causal mechanism", in the sense that the values of one variable may have been generated from the values of the other. This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website. Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.
This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how the semi-supervised paradigm and the learning to rank paradigm emerged from new web applications, leading to a massive production of heterogeneous textual data. It explains how semi-supervised learning techniques are widely used, but only allow a limited analysis of the information content and thus do not meet the demands of many web-related tasks. Later chapters deal with the development of learning methods for ranking entities in a large collection with respect to precise information needed. In some cases, learning a ranking function can be reduced to learning a classification function over the pairs of examples. The book proves that this task can be efficiently tackled in a new framework: learning with interdependent data. Researchers and professionals in machine learning will find these new perspectives and solutions valuable. Learning with Partially Labeled and Interdependent Data is also useful for advanced-level students of computer science, particularly those focused on statistics and learning.
THIS ISN'T AN EPISODE OF BLACK MIRROR. THIS. IS. THE. FUTURE. The problem of online disinformation is only getting worse. Social media may well play a role in the the US 2020 presidential election and other major political events. But that doesn't even begin to describe what future propaganda will look like. As Samuel Woolley shows, we will soon be navigating new technologies such as human-like automated voice systems, machine learning, 'deep-fake' AI-edited videos and images, interactive memes, virtual reality and augmented reality. In stories both deeply researched and compellingly written, Woolley describes this future, and explains how the technology can be manipulated, who might control it and its impact on political strategy. Finally, Woolley proposes strategic responses to this threat with the ultimate goal of empowering activists and pushing technology builders to design for democracy. We may not be able to alter how the internet was used to challenge democracy in years past but we can follow the signals to prevent manipulation in the future - and to use these powerful new tools not to control people but to empower them.
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data.
Embedded Analytics is one of the hottest trends in business intelligence right now. It's being used in multiple ways to improve decision making, provide faster insights, gain competitive advantages and grow revenue. Over the last 10 years, data analytics and data visualization have become essential components of an enterprise information strategy. Nevertheless, despite this recognition, the adoption of data analytics has remained remarkably static - perhaps reaching no more than thirty percent of potential users. This book explores the most important techniques for taking that adoption further: embedding analytics into the workflow of our everyday operations.
Effective decision-making while trading off the constraints and conflicting multiple objectives under rapid technological developments, massive generation of data, and extreme volatility is of paramount importance to organizations to win over the time-based competition today. While agility is a crucial issue, the firms have been increasingly relying on evidence-based decision-making through intelligent decision support systems driven by computational intelligence and automation to achieve a competitive advantage. The decisions are no longer confined to a specific functional area. Instead, business organizations today find actionable insight for formulating future courses of action by integrating multiple objectives and perspectives. Therefore, multi-objective decision-making plays a critical role in businesses and industries. In this regard, the importance of Operations Research (OR) models and their applications enables the firms to derive optimum solutions subject to various constraints and/or objectives while considering multiple functional areas of the organizations together. Hence, researchers and practitioners have extensively applied OR models to solve various organizational issues related to manufacturing, service, supply chain and logistics management, human resource management, finance, and market analysis, among others. Further, OR models driven by AI have been enabled to provide intelligent decision-support frameworks for achieving sustainable development goals. The present issue provides a unique platform to showcase the contributions of the leading international experts on production systems and business from academia, industry, and government to discuss the issues in intelligent manufacturing, operations management, financial management, supply chain management, and Industry 4.0 in the Artificial Intelligence era. Some of the general (but not specific) scopes of this proceeding entail OR models such as Optimization and Control, Combinatorial Optimization, Queuing Theory, Resource Allocation Models, Linear and Nonlinear Programming Models, Multi-objective and multi-attribute Decision Models, Statistical Quality Control along with AI, Bayesian Data Analysis, Machine Learning and Econometrics and their applications vis-à -vis AI & Data-driven Production Management, Marketing and Retail Management, Financial Management, Human Resource Management, Operations Management, Smart Manufacturing & Industry 4.0, Supply Chain and Logistics Management, Digital Supply Network, Healthcare Administration, Inventory Management, consumer behavior, security analysis, and portfolio management and sustainability.  The present issue shall be of interest to the faculty members, students, and scholars of various engineering and social science institutions and universities, along with the practitioners and policymakers of different industries and organizations.
Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers. |
You may like...
Artificial Intelligence, Machine…
Shikha Jain, Kavita Pandey, …
Paperback
R2,958
Discovery Miles 29 580
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha
Paperback
R3,925
Discovery Miles 39 250
Deep Learning Applications
Pier Luigi Mazzeo, Paolo Spagnolo
Hardcover
R3,089
Discovery Miles 30 890
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, …
Paperback
R3,380
Discovery Miles 33 800
Hamiltonian Monte Carlo Methods in…
Tshilidzi Marwala, Rendani Mbuvha, …
Paperback
R3,518
Discovery Miles 35 180
Deep Learning for Sustainable…
Ramesh Poonia, Vijander Singh, …
Paperback
R2,957
Discovery Miles 29 570
Application of Machine Learning in…
Mohammad Ayoub Khan, Rijwan Khan, …
Paperback
R3,433
Discovery Miles 34 330
Machine Learning for Biometrics…
Partha Pratim Sarangi, Madhumita Panda, …
Paperback
R2,570
Discovery Miles 25 700
Cognitive Data Models for Sustainable…
Siddhartha Bhattacharyya, Naba Kumar Mondal, …
Paperback
R2,770
Discovery Miles 27 700
|