![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
This book aims to present dominant applications and use cases of the fast-evolving DT and determines vital Industry 4.0 technologies for building DT that can provide solutions for fighting local and globalmedical emergencies during pandemics. Moreover, it discusses a new framework integrating DT and blockchain technology to provide a more efficient and effective preventive conservation in different applications.
This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management.
This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects.
Whether you're part of a small startup or a planet-spanning megacorp, this practical book shows data scientists, SREs, and business owners how to run ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization. By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guests show you how to run an efficient ML system. Whether you want to increase revenue, optimize decision-making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind. You'll examine: What ML is: how it functions and what it relies on Conceptual frameworks for understanding how ML "loops" work Effective "productionization," and how it can be made easily monitorable, deployable, and operable Why ML systems make production troubleshooting more difficult, and how to get around them How ML, product, and production teams can communicate effectively
This book aims to reach an understanding of how the mind carries
out three sorts of thinking -- deduction, induction, and creation
-- to consider what goes right and what goes wrong, and to explore
computational models of these sorts of thinking. Written for
students of the mind -- psychologists, computer scientists,
philosophers, linguists, and other cognitive scientists -- it also
provides general readers with a self-contained account of human and
machine thinking. The author presents his point of view, rather
than a review, as simply as possible so that no technical
background is required. Like the field of research itself, it calls
for hard thinking about thinking.
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Learn how to set up Kubeflow on a cloud provider or on an in-house cluster Train models using Kubeflow with popular tools including scikit-learn, TensorFlow, and Apache Spark Learn how to add custom stages such as serving and prediction Keep your model up-to-date with Kubeflow Pipelines Understand how to validate machine learning pipelines
This is the second volume of a large two-volume editorial project we wish to dedicate to the memory of the late Professor Ryszard S. Michalski who passed away in 2007. He was one of the fathers of machine learning, an exciting and relevant, both from the practical and theoretical points of view, area in modern computer science and information technology. His research career started in the mid-1960s in Poland, in the Institute of Automation, Polish Academy of Sciences in Warsaw, Poland. He left for the USA in 1970, and since then had worked there at various universities, notably, at the University of Illinois at Urbana - Champaign and finally, until his untimely death, at George Mason University. We, the editors, had been lucky to be able to meet and collaborate with Ryszard for years, indeed some of us knew him when he was still in Poland. After he started working in the USA, he was a frequent visitor to Poland, taking part at many conferences until his death. We had also witnessed with a great personal pleasure honors and awards he had received over the years, notably when some years ago he was elected Foreign Member of the Polish Academy of Sciences among some top scientists and scholars from all over the world, including Nobel prize winners. Professor Michalski's research results influenced very strongly the development of machine learning, data mining, and related areas. Also, he inspired many established and younger scholars and scientists all over the world. We feel very happy that so many top scientists from all over the world agreed to pay the last tribute to Professor Michalski by writing papers in their areas of research. These papers will constitute the most appropriate tribute to Professor Michalski, a devoted scholar and researcher. Moreover, we believe that they will inspire many newcomers and younger researchers in the area of broadly perceived machine learning, data analysis and data mining. The papers included in the two volumes, Machine Learning I and Machine Learning II, cover diverse topics, and various aspects of the fields involved. For convenience of the potential readers, we will now briefly summarize the contents of the particular chapters.
Learning with uncertainty covers a broad range of scenarios in machine learning, this book mainly focuses on: (1) Decision tree learning with uncertainty, (2) Clustering under uncertainty environment, (3) Active learning based on uncertainty criterion, and (4) Ensemble learning in a framework of uncertainty. The book starts with the introduction to uncertainty including randomness, roughness, fuzziness and non-specificity and then comprehensively discusses a number of key issues in learning with uncertainty, such as uncertainty representation in learning, the influence of uncertainty on the performance of learning system, the heuristic design with uncertainty, etc. Most contents of the book are our research results in recent decades. The purpose of this book is to help the readers to understand the impact of uncertainty on learning processes. It comes with many examples to facilitate understanding. The book can be used as reference book or textbook for researcher fellows, senior undergraduates and postgraduates majored in computer science and technology, applied mathematics, automation, electrical engineering, etc.
Someday computers will be artists. They'll be able to write amusing and original stories, invent and play games of unsurpassed complexity and inventiveness, tell jokes and suffer writer's block. But these things will require computers that can both achieve artistic goals and be creative. Both capabilities are far from accomplished. This book presents a theory of creativity that addresses some of the many hard problems which must be solved to build a creative computer. It also presents an exploration of the kinds of goals and plans needed to write simple short stories. These theories have been implemented in a computer program called MINSTREL which tells stories about King Arthur and his knights. While far from being the silicon author of the future, MINSTREL does illuminate many of the interesting and difficult issues involved in constructing a creative computer. The results presented here should be of interest to at least three different groups of people. Artificial intelligence researchers should find this work an interesting application of symbolic AI to the problems of story-telling and creativity. Psychologists interested in creativity and imagination should benefit from the attempt to build a detailed, explicit model of the creative process. Finally, authors and others interested in how people write should find MINSTREL's model of the author-level writing process thought-provoking.
Just over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data mining has sparked renewed interest in LCS. This book brings together work by a number of individuals who are demonstrating their good performance in a variety of domains. The first contribution is arranged as follows: Firstly, the main forms of LCS are described in some detail. A number of historical uses of LCS in data mining are then reviewed before an overview of the rest of the volume is presented. The rest of this book describes recent research on the use of LCS in the main areas of machine learning data mining: classification, clustering, time-series and numerical prediction, feature selection, ensembles, and knowledge discovery.
The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. This book is a collection of research papers and state-of-the-art reviews by leading researchers all over the world. It includes pointers to challenges and opportunities for future research directions. The main goal of the book is to identify good practices for the use of learning strategies in DAR.
This comprehensive and timely book, New Age Analytics: Transforming the Internet through Machine Learning, IoT, and Trust Modeling, explores the importance of tools and techniques used in machine learning, big data mining, and more. The book explains how advancements in the world of the web have been achieved and how the experiences of users can be analyzed. It looks at data gathering by the various electronic means and explores techniques for analysis and management, how to manage voluminous data, user responses, and more. This volume provides an abundance of valuable information for professionals and researchers working in the field of business analytics, big data, social network data, computer science, analytical engineering, and forensic analysis. Moreover, the book provides insights and support from both practitioners and academia in order to highlight the most debated aspects in the field.
Event mining encompasses techniques for automatically and efficiently extracting valuable knowledge from historical event/log data. The field, therefore, plays an important role in data-driven system management. Event Mining: Algorithms and Applications presents state-of-the-art event mining approaches and applications with a focus on computing system management. The book first explains how to transform log data in disparate formats and contents into a canonical form as well as how to optimize system monitoring. It then shows how to extract useful knowledge from data. It describes intelligent and efficient methods and algorithms to perform data-driven pattern discovery and problem determination for managing complex systems. The book also discusses data-driven approaches for the detailed diagnosis of a system issue and addresses the application of event summarization in Twitter messages (tweets). Understanding the interdisciplinary field of event mining can be challenging as it requires familiarity with several research areas and the relevant literature is scattered in diverse publications. This book makes it easier to explore the field by providing both a good starting point for readers not familiar with the topics and a comprehensive reference for those already working in this area.
This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms, and deep dives into several applications, make the book equally useful for researchers, students and practitioners.
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The "parent problem" of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
"The first edition of Deep Learning with Python is one of the best books on the subject. The second edition made it even better." - Todd Cook The bestseller revised! Deep Learning with Python, Second Edition is a comprehensive introduction to the field of deep learning using Python and the powerful Keras library. Written by Google AI researcher Francois Chollet, the creator of Keras, this revised edition has been updated with new chapters, new tools, and cutting-edge techniques drawn from the latest research. You'll build your understanding through practical examples and intuitive explanations that make the complexities of deep learning accessible and understandable. about the technology Machine learning has made remarkable progress in recent years. We've gone from near-unusable speech recognition, to near-human accuracy. From machines that couldn't beat a serious Go player, to defeating a world champion. Medical imaging diagnostics, weather forecasting, and natural language question answering have suddenly become tractable problems. Behind this progress is deep learning-a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications across every industry sector about the book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. You'll learn directly from the creator of Keras, Francois Chollet, building your understanding through intuitive explanations and practical examples. Updated from the original bestseller with over 50% new content, this second edition includes new chapters, cutting-edge innovations, and coverage of the very latest deep learning tools. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. what's inside Deep learning from first principles Image-classification, imagine segmentation, and object detection Deep learning for natural language processing Timeseries forecasting Neural style transfer, text generation, and image generation about the reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. about the author Francois Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does AI research, with a focus on abstraction and reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others.
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
"Foundations of Large-Scale Multimedia Information Management and Retrieval - Mathematics of Perception"" "covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions. The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval. Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.
Machine Learning and Knowledge Discovery for Engineering Systems Health Management presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. With contributions from many top authorities on the subject, this volume is the first to bring together the two areas of machine learning and systems health management. Divided into three parts, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management. The first part of the text describes data-driven methods for anomaly detection, diagnosis, and prognosis of massive data streams and associated performance metrics. It also illustrates the analysis of text reports using novel machine learning approaches that help detect and discriminate between failure modes. The second part focuses on physics-based methods for diagnostics and prognostics, exploring how these methods adapt to observed data. It covers physics-based, data-driven, and hybrid approaches to studying damage propagation and prognostics in composite materials and solid rocket motors. The third part discusses the use of machine learning and physics-based approaches in distributed data centers, aircraft engines, and embedded real-time software systems. Reflecting the interdisciplinary nature of the field, this book shows how various machine learning and knowledge discovery techniques are used in the analysis of complex engineering systems. It emphasizes the importance of these techniques in managing the intricate interactions within and between the systems to maintain a high degree of reliability.
In machine learning applications, practitioners must take into account the cost associated with the algorithm. These costs include:
Cost-Sensitive Machine Learning is one of the first books to provide an overview of the current research efforts and problems in this area. It discusses real-world applications that incorporate the cost of learning into the modeling process. The first part of the book presents the theoretical underpinnings of cost-sensitive machine learning. It describes well-established machine learning approaches for reducing data acquisition costs during training as well as approaches for reducing costs when systems must make predictions for new samples. The second part covers real-world applications that effectively trade off different types of costs. These applications not only use traditional machine learning approaches, but they also incorporate cutting-edge research that advances beyond the constraining assumptions by analyzing the application needs from first principles. Spurring further research on several open problems, this volume highlights the often implicit assumptions in machine learning techniques that were not fully understood in the past. The book also illustrates the commercial importance of cost-sensitive machine learning through its coverage of the rapid application developments made by leading companies and academic research labs.
Genetic Programming Theory and Practice III provides both researchers and industry professionals with the most recent developments in GP theory and practice by exploring the emerging interaction between theory and practice in the cutting-edge, machine learning method of Genetic Programming (GP). The contributions developed from a third workshop at the University of Michigan's Center for the Study of Complex Systems, where leading international genetic programming theorists from major universities and active practitioners from leading industries and businesses meet to examine and challenge how GP theory informs practice and how GP practice impacts GP theory. Applications are from a wide range of domains, including chemical process control, informatics, and circuit design, to name a few.
Algorithmic Trading Methods: Applications using Advanced Statistics, Optimization, and Machine Learning Techniques, Second Edition, is a sequel to The Science of Algorithmic Trading and Portfolio Management. This edition includes new chapters on algorithmic trading, advanced trading analytics, regression analysis, optimization, and advanced statistical methods. Increasing its focus on trading strategies and models, this edition includes new insights into the ever-changing financial environment, pre-trade and post-trade analysis, liquidation cost & risk analysis, and compliance and regulatory reporting requirements. Highlighting new investment techniques, this book includes material to assist in the best execution process, model validation, quality and assurance testing, limit order modeling, and smart order routing analysis. Includes advanced modeling techniques using machine learning, predictive analytics, and neural networks. The text provides readers with a suite of transaction cost analysis functions packaged as a TCA library. These programming tools are accessible via numerous software applications and programming languages.
Discover how all levels Artificial Intelligence (AI) can be present in the most unimaginable scenarios of ordinary lives. This book explores subjects such as neural networks, agents, multi agent systems, supervised learning, and unsupervised learning. These and other topics will be addressed with real world examples, so you can learn fundamental concepts with AI solutions and apply them to your own projects. People tend to talk about AI as something mystical and unrelated to their ordinary life. Practical Artificial Intelligence provides simple explanations and hands on instructions. Rather than focusing on theory and overly scientific language, this book will enable practitioners of all levels to not only learn about AI but implement its practical uses. What You'll Learn Understand agents and multi agents and how they are incorporated Relate machine learning to real-world problems and see what it means to you Apply supervised and unsupervised learning techniques and methods in the real world Implement reinforcement learning, game programming, simulation, and neural networks Who This Book Is For Computer science students, professionals, and hobbyists interested in AI and its applications. |
![]() ![]() You may like...
Algorithm Design: A Methodological…
Patrick Bosc, Marc Guyomard, …
Paperback
R1,641
Discovery Miles 16 410
From Linear Operators to Computational…
Martin Davis, Edmond Schonberg
Hardcover
R2,882
Discovery Miles 28 820
Open Source Software: New Horizons - 6th…
Par J A Gerfalk, Cornelia Boldyreff, …
Hardcover
R2,946
Discovery Miles 29 460
Open Source Ecosystems: Diverse…
Cornelia Boldyreff, Kevin Crowston, …
Hardcover
R2,932
Discovery Miles 29 320
Principled Software Development - Essays…
Peter Muller, Ina Schaefer
Hardcover
R2,915
Discovery Miles 29 150
|