![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
This book constitutes the refereed proceedings of the Second International Workshop on Autonomous Intelligent Systems: Agents and Data Mining, AIS-ADM 2007, held in St. Petersburg, Russia in June 2007. The 17 revised full papers and six revised short papers presented together with four invited lectures cover agent and data mining, agent competition and data mining, as well as text mining, semantic Web, and agents.
This book constitutes the thoroughly refereed joint post-proceedings of 3 consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL, USA in July 2003, in Seattle, WA, USA in June 2004, and in Washington, DC, USA in June 2005 - all hosted by the Genetic and Evolutionary Computation Conference, GECCO. The 22 revised full papers presented were carefully reviewed and selected from the workshop contributions. The papers are organized in topical sections on knowledge representation, mechanisms, new directions, as well as application-oriented research and tools. The topics range from theoretical analysis of mechanisms to practical consideration for successful application of such techniques to everday datamining tasks.
This volume contains a collection of the papers presented during the First International ACM-L Workshop, which was held in Tucson, Arizona, on November 8, 2006, during the 25th International Conference on Conceptual Modeling, ER 2006. The workshop focused on enhancing the fundamental understanding of how to model continual learning from past experiences and how to capture knowledge from transitions between system states. Active conceptual modeling is a continual process of describing all aspects of a domain, its activities, and changes from different perspectives based on our knowledge and understanding. Included in this state-of-the-art survey are 11 revised full papers, carefully reviewed and selected from the workshop presentations. Rounded off with 4 invited lectures and an introductory and motivational overview, these papers represent the current thinking in conceptual modeling research.
This volume of the Transactions on Rough Sets commemorates the life and work of Zdzislaw Pawlak (1926-2006), whose legacy is rich and varied. It presents papers that reflect the profound influence of a number of research initiatives by Professor Pawlak, introducing a number of new advances in the foundations and applications of artificial intelligence, engineering, logic, mathematics, and science.
This book contains a selection of revised papers from the 4th Workshop on Machine Learning for Multimodal Interaction (MLMI 2007), which took place in Brno, Czech Republic, during June 28-30, 2007. As in the previous editions of the MLMI series, the 26 chapters of this book cover a large area of topics, from multimodal processing and human-computer interaction to video, audio, speech and language processing. The application of machine learning techniques to problems arising in these ?elds and the design and analysis of software s- portingmultimodalhuman-humanandhuman-computerinteractionarethetwo overarching themes of this post-workshop book. The MLMI 2007 workshop featured 18 oral presentations-two invited talks, 14 regular talks and two special session talks-and 42 poster presentations. The participants were not only related to the sponsoring projects, AMI/AMIDA (http://www.amiproject.org) and IM2 (http://www.im2.ch), but also to other largeresearchprojects onmultimodalprocessingand multimedia browsing,such as CALO and CHIL. Local universities were well represented, as well as other European, US and Japanese universities, research institutions and private c- panies, from a dozen countries overall.
Once realized, the potential of large-scale quantum computers promises to radically transform computer science. Despite large-scale international efforts, however, essential questions about the potential of quantum algorithms are still unanswered. Automatic Quantum Computer Programming is an introduction both to quantum computing for non-physicists and to genetic programming for non-computer-scientists. The book explores several ways in which genetic programming can support automatic quantum computer programming and presents detailed descriptions of specific techniques, along with several examples of their human-competitive performance on specific problems.
Data-driven discovery is revolutionizing how we model, predict, and control complex systems. Now with Python and MATLAB (R), this textbook trains mathematical scientists and engineers for the next generation of scientific discovery by offering a broad overview of the growing intersection of data-driven methods, machine learning, applied optimization, and classical fields of engineering mathematics and mathematical physics. With a focus on integrating dynamical systems modeling and control with modern methods in applied machine learning, this text includes methods that were chosen for their relevance, simplicity, and generality. Topics range from introductory to research-level material, making it accessible to advanced undergraduate and beginning graduate students from the engineering and physical sciences. The second edition features new chapters on reinforcement learning and physics-informed machine learning, significant new sections throughout, and chapter exercises. Online supplementary material - including lecture videos per section, homeworks, data, and code in MATLAB (R), Python, Julia, and R - available on databookuw.com.
This book constitutes the refereed proceedings of the 6th International Conference on Simulated Evolution and Learning, SEAL 2006, held in Hefei, China in October 2006. The 117 revised full papers presented were carefully reviewed and selected from 420 submissions. The papers are organized in topical sections on evolutionary learning, evolutionary optimisation, hybrid learning, adaptive systems, theoretical issues in evolutionary computation, and real-world applications of evolutionary computation techniques.
This book constitutes the refereed proceedings of the 18th International Conference on Algorithmic Learning Theory, ALT 2007, held in Sendai, Japan, October 1-4, 2007, colocated with the 10th International Conference on Discovery Science, DS 2007. The 25 revised full papers presented together with the abstracts of 5 invited papers were carefully reviewed and selected from 50 submissions. The papers are dedicated to the theoretical foundations of machine learning; they address topics such as query models, on-line learning, inductive inference, algorithmic forecasting, boosting, support vector machines, kernel methods, complexity and learning, reinforcement learning, unsupervised learning and grammatical inference.
This book constitutes the refereed proceedings of the 6th Industrial Conference on Data Mining, ICDM 2006, held in Leipzig, Germany in July 2006. Presents 45 carefully reviewed and revised full papers organized in topical sections on data mining in medicine, Web mining and logfile analysis, theoretical aspects of data mining, data mining in marketing, mining signals and images, and aspects of data mining, and applications such as intrusion detection, and more.
This book presents the refereed post-proceedings of the Third International Workshop on Anticipatory Behavior in Adaptive Learning Systems. Twenty full papers were chosen from among the many submissions. Papers are organized into sections covering anticipatory aspects in brains, language, and cognition; individual anticipatory frameworks; learning predictions and anticipations; anticipatory individual behavior; and anticipatory social behavior.
This book constitutes the refereed proceedings of the 17th European Conference on Machine Learning, ECML 2006, held, jointly with PKDD 2006. The book presents 46 revised full papers and 36 revised short papers together with abstracts of 5 invited talks, carefully reviewed and selected from 564 papers submitted. The papers present a wealth of new results in the area and address all current issues in machine learning.
This book constitutes the refereed proceedings of the 18th European Conference on Machine Learning, ECML 2007, held in Warsaw, Poland, September 17-21, 2007, jointly with PKDD 2007. The 41 revised full papers and 37 revised short papers presented together with abstracts of 4 invited talks were carefully reviewed and selected from 592 abstracts submitted to both, ECML and PKDD. The papers present a wealth of new results in the area and address all current issues in machine learning.
This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning.
This volumecontains paperspresentedatthe 20thAnnualConferenceonLea- ing Theory (previously known as the Conference on Computational Learning Theory) held in San Diego, USA, June 13-15, 2007, as part of the 2007 Fed- ated Computing Research Conference (FCRC). The Technical Program contained 41 papers selected from 92 submissions, 5 open problems selected from among 7 contributed, and 2 invited lectures. The invited lectures were givenby Dana Ron on PropertyTesting: A Learning T- oryPerspective, andbySantoshVempalaon SpectralAlgorithmsforLearning and Clustering. The abstracts of these lectures are included in this volume. The Mark Fulk Award is presented annually for the best paper co-authored by a student. The student selected this year was Samuel E. Moelius III for the paper U-Shaped, Iterative, and Iterative-with-Counter Learning co-authored with John Case. This year, student awards were also granted by the Machine LearningJournal.Wehavethereforebeenabletoselecttwomorestudentpapers forprizes.Thestudents selectedwereLev Reyzinforthe paper LearningLarge- Alphabet and Analog Circuits with Value Injection Queries (co-authored with Dana Angluin, James Aspnes, and Jiang Chen), and Jennifer Wortman for the paper Regret to the Best vs. Regret to the Average (co-authored with Eyal Even-Dar, Michael Kearns, and Yishay Mansour). The selected papers cover a wide range of topics, including unsupervised, semisupervisedand activelearning, statistical learningtheory, regularizedlea- ing, kernel methods and SVM, inductive inference, learning algorithms and l- itations on learning, on-line and reinforcement learning. The last topic is part- ularly well represented, covering alone more than one-fourth of the total."
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.
Machinelearningis arapidlymaturing?eldthataims toprovidepracticalme- ods for data discovery, categorization and modelling. The She?eld Machine Learning Workshop, which was held 7-10 September 2004, brought together some of the leading international researchers in the ?eld for a series of talks and posters that represented new developments in machine learning and numerical methods. The workshop was sponsored by the Engineering and Physical Sciences - search Council (EPSRC) and the London Mathematical Society (LMS) through the MathFIT program,whose aim is the encouragementof new interdisciplinary research.AdditionalfundingwasprovidedbythePASCALEuropeanFramework 6 Network of Excellence and the University of She?eld. It was the commitment of these funding bodies that enabled the workshop to have a strong program of invited speakers,and the organizerswish to thank these funding bodies for their ?nancial support. The particular focus for interactions at the workshop was - vanced Research Methods in Machine Learning and Statistical Signal Processing. These proceedings contain work that was presented at the workshop, and ideas that were developed through, or inspired by, attendance at the workshop. The proceedings re?ect this mixture and illustrate the diversity of applications and theoretical work in machine learning. We would like to thank the presenters and attendees at the workshop for the excellent quality of presentation and discussion during the oral and poster sessions. We are also grateful to Gillian Callaghan for her support in the orga- zation of the workshop, and ?nally we wish to thank the anonymous reviewers for their help in compiling the proceedings.
This volume contains the papers presented at the 16th Annual International Conference on Algorithmic Learning Theory (ALT 2005), which was held in S- gapore (Republic of Singapore), October 8-11, 2005. The main objective of the conference is to provide an interdisciplinary forum for the discussion of the t- oretical foundations of machine learning as well as their relevance to practical applications. The conference was co-located with the 8th International Conf- enceonDiscoveryScience(DS2005). Theconferencewasalsoheldinconjunction with the centennial celebrations of the National University of Singapore. The volume includes 30 technical contributions, which were selected by the program committee from 98 submissions. It also contains the ALT 2005 invited talks presented by Chih-Jen Lin (National Taiwan University, Taipei, Taiwan) on "Training Support Vector Machines via SMO-type Decomposition Methods," and by Vasant Honavar (Iowa State University, Ames, Iowa, USA) on "Al- rithmsandSoftwareforCollaborativeDiscoveryfromAutonomous, Semantically Heterogeneous, Distributed, Information Sources. " Furthermore, this volume - cludes an abstract of the joint invited talk with DS 2005 presented by Gary L. Bradshaw (Mississippi State University, Starkville, USA) on "Invention and Arti?cial Intelligence," and abstracts of the invited talks for DS 2005 presented by Ross D. King (The University of Wales, Aberystwyth, UK) on "The Robot Scientist Project," and by Neil Smalheiser (University of Illinois at Chicago, Chicago, USA) on "The Arrowsmith Project: 2005 Status Report. " The c- plete versions of these papers are published in the DS 2005 proceedings (Lecture Notes in Computer Science Vol. 3735).
This book constitutes the thoroughly refereed post-proceedings of the First VLDB 2006 International Workshop on Data Mining and Bioinformatics, VDMB 2006, held in Seoul, Korea in September 2006 in conjunction with VLDB 2006. The 15 revised full papers cover various topics in the areas of microarray data analysis, bioinformatics system and text retrieval, application of gene expression data, and sequence analysis.
This book constitutes the thoroughly refereed post-proceedings of the Third International Workshop on Machine Learning for Multimodal Interaction, MLMI 2006, held in Bethseda, MD, USA, in May 2006. The 39 revised full papers presented together with 1 invited
paper were carefully selected during two rounds of reviewing and
revision. The papers are organized in topical sections on
multimodal processing, image and video processing, HCI and
applications, discourse and dialogue, speech and audio processing,
and NIST meeting recognition evaluation.
This book is dedicated to the monumental life, work and creative genius of Zdzislaw Pawlak, the originator of rough sets, who passed away in April 2006. It opens with a commemorative article that gives a brief coverage of Pawlak's works in rough set theory, molecular computing, philosophy, painting and poetry. Fifteen papers explore the theory of rough sets in various domains as well as new applications of rough sets.
What is an artificial intelligence (AI)-enabled drone and what can it do? Are AI-enabled drones better than human-controlled drones? This book will answer these questions and more, and empower you to develop your own AI-enabled drone. You'll progress from a list of specifications and requirements, in small and iterative steps, which will then lead to the development of Unified Modeling Language (UML) diagrams based in part to the standards established by for the Robotic Operating System (ROS). The ROS architecture has been used to develop land-based drones. This will serve as a reference model for the software architecture of unmanned systems. Using this approach you'll be able to develop a fully autonomous drone that incorporates object-oriented design and cognitive deep learning systems that adapts to multiple simulation environments. These multiple simulation environments will also allow you to further build public trust in the safety of artificial intelligence within drones and small UAS. Ultimately, you'll be able to build a complex system using the standards developed, and create other intelligent systems of similar complexity and capability. Intelligent Autonomous Drones with Cognitive Deep Learning uniquely addresses both deep learning and cognitive deep learning for developing near autonomous drones. What You'll Learn Examine the necessary specifications and requirements for AI enabled drones for near-real time and near fully autonomous drones Look at software and hardware requirements Understand unified modeling language (UML) and real-time UML for design Study deep learning neural networks for pattern recognition Review geo-spatial Information for the development of detailed mission planning within these hostile environments Who This Book Is For Primarily for engineers, computer science graduate students, or even a skilled hobbyist. The target readers have the willingness to learn and extend the topic of intelligent autonomous drones. They should have a willingness to explore exciting engineering projects that are limited only by their imagination. As far as the technical requirements are concerned, they must have an intermediate understanding of object-oriented programming and design.
This volume contains papers presented at the Eighteenth Annual Conference on Learning Theory (previously known as the Conference on Computational Learning Theory) held in Bertinoro, Italy from June 27 to 30, 2005. The technical program contained 45 papers selected from 120 submissions, 3 open problems selected from among 5 contributed, and 2 invited lectures. The invited lectures were given by Sergiu Hart on "Uncoupled Dynamics and Nash Equilibrium", and by Satinder Singh on "Rethinking State, Action, and Reward in Reinforcement Learning". These papers were not included in this volume. The Mark Fulk Award is presented annually for the best paper co-authored by a student. The student selected this year was Hadi Salmasian for the paper titled "The Spectral Method for General Mixture Models" co-authored with Ravindran Kannan and Santosh Vempala. The number of papers submitted to COLT this year was exceptionally high. In addition to the classical COLT topics, we found an increase in the number of submissions related to novel classi?cation scenarios such as ranking. This - crease re?ects a healthy shift towards more structured classi?cation problems, which are becoming increasingly relevant to practitioners.
Volume III of the Transactions on Rough Sets (TRS) introduces advances in the theory and application of rough sets. These advances have far-reaching impli- tions in a number of researchareas such as approximate reasoning, bioinform- ics, computerscience, datamining, engineering(especially, computerengineering and signal analysis), intelligent systems, knowledge discovery, pattern recog- tion, machineintelligence, andvariousformsoflearning. This volumerevealsthe vigor, breadth and depth in research either directly or indirectly related to the rough sets theory introduced by Prof. Zdzis law Pawlak more than three decades ago. Evidence of this can be found in the seminal paper on data mining by Prof. Pawlak included in this volume. In addition, there are eight papers on the theory and application of rough sets as well as a presentation of a new version of the Rough Set Exploration System (RSES) tool set and an introduction to the Rough Set Database System (RSDS). Prof. Pawlak has contributed a pioneering paper on data mining to this v- ume. In this paper, it is shown that information ?ow in a ?ow graph is governed by Bayes' rule with a deterministic rather than a probabilistic interpretation. A cardinal feature of this paper is that it is self-contained inasmuch as it not only introduces a new viewof information?owbut alsoprovidesanintroduction to the basic concepts of ?ow graphs. The representation of information ?ow - troduced in this paper makes it possible to study di?erent relationships in data and establishes a basis for a new mathematical tool for data mining. Inadditionto thepaperbyProf
This book constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. 25 papers address three challenges: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; second, recognizing objects from a number of visual object classes in realistic scenes; third, recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding. |
You may like...
Skin We Are In - A Celebration Of The…
Sindiwe Magona, Nina G. Jablonski
Paperback
R159
Discovery Miles 1 590
How to Draw Princess Books for Kids - A…
Pineapple Activity Books
Hardcover
Intro to Python for Computer Science and…
Paul Deitel
Paperback
Handbook of Research on Social and…
Santosh Kumar Biswal, Krishna Sankar Kusuma, …
Hardcover
R6,536
Discovery Miles 65 360
How To Draw Shojo Manga - Your Step By…
Howexpert, Christy Peraja
Hardcover
R764
Discovery Miles 7 640
|