0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (5)
  • R250 - R500 (28)
  • R500+ (2,330)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Machine Learning in Chemistry - The Impact of Artificial Intelligence (Hardcover): Hugh M. Cartwright Machine Learning in Chemistry - The Impact of Artificial Intelligence (Hardcover)
Hugh M. Cartwright
R6,397 Discovery Miles 63 970 Ships in 10 - 15 working days

Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.

Predictive Analytics in Cloud, Fog, and Edge Computing - Perspectives and Practices of Blockchain, IoT, and 5G (Hardcover, 1st... Predictive Analytics in Cloud, Fog, and Edge Computing - Perspectives and Practices of Blockchain, IoT, and 5G (Hardcover, 1st ed. 2023)
Hiren Kumar Thakkar, Chinmaya Kumar Dehury, Prasan Kumar Sahoo, Bharadwaj Veeravalli
R5,024 Discovery Miles 50 240 Ships in 12 - 17 working days

This book covers the relationship of recent technologies (such as Blockchain, IoT, and 5G) with the cloud computing as well as fog computing, and mobile edge computing. The relationship will not be limited to only architecture proposal, trends, and technical advancements. However, the book also explores the possibility of predictive analytics in cloud computing with respect to Blockchain, IoT, and 5G. The recent advancements in the internet-supported distributed computing i.e. cloud computing, has made it possible to process the bulk amount of data in a parallel and distributed. This has made it a lucrative technology to process the data generated from technologies such as Blockchain, IoT, and 5G. However, there are several issues a Cloud Service Provider (CSP) encounters, such as Blockchain security in cloud, IoT elasticity and scalability management in cloud, Service Level Agreement (SLA) compliances for 5G, Resource management, Load balancing, and Fault-tolerance. This edited book will discuss the aforementioned issues in connection with Blockchain, IoT, and 5G. Moreover, the book discusses how the cloud computing is not sufficient and one needs to use fog computing, and edge computing to efficiently process the data generated from IoT, and 5G. Moreover, the book shows how smart city, smart healthcare system, and smart communities are few of the most relevant IoT applications where fog computing plays a significant role. The book discusses the limitation of fog computing and the need for the edge computing to further reduce the network latency to process streaming data from IoT devices. The book also explores power of predictive analytics of Blockchain, IoT, and 5G data in cloud computing with its sister technologies. Since, the amount of resources increases day-by day, artificial intelligence (AI) tools are becoming more popular due to their capability which can be used in solving wide variety of issues, such as minimize the energy consumption of physical servers, optimize the service cost, improve the quality of experience, increase the service availability, efficiently handle the huge data flow, manages the large number of IoT devices, etc.

Applications of Learning Classifier Systems (Hardcover, 2004 ed.): Larry Bull Applications of Learning Classifier Systems (Hardcover, 2004 ed.)
Larry Bull
R4,740 Discovery Miles 47 400 Ships in 12 - 17 working days

The field called Learning Classifier Systems is populated with romantics. Why shouldn't it be possible for computer programs to adapt, learn, and develop while interacting with their environments? In particular, why not systems that, like organic populations, contain competing, perhaps cooperating, entities evolving together? John Holland was one of the earliest scientists with this vision, at a time when so-called artificial intelligence was in its infancy and mainly concerned with preprogrammed systems that didn't learn. that, like organisms, had sensors, took Instead, Holland envisaged systems actions, and had rich self-generated internal structure and processing. In so doing he foresaw and his work prefigured such present day domains as reinforcement learning and embedded agents that are now displacing the older "standard Af' . One focus was what Holland called "classifier systems" sets of competing rule like "classifiers," each a hypothesis as to how best to react to some aspect of the environment--or to another rule. The system embracing such a rule "popu lation" would explore its available actions and responses, rewarding and rating the active rules accordingly. Then "good" classifiers would be selected and re produced, mutated and even crossed, a la Darwin and genetics, steadily and reliably increasing the system's ability to cope."

Advanced Machine Intelligence and Signal Processing (Hardcover, 1st ed. 2022): Deepak Gupta, Koj Sambyo, Mukesh Prasad, Sonali... Advanced Machine Intelligence and Signal Processing (Hardcover, 1st ed. 2022)
Deepak Gupta, Koj Sambyo, Mukesh Prasad, Sonali Agarwal
R7,635 Discovery Miles 76 350 Ships in 10 - 15 working days

This book covers the latest advancements in the areas of machine learning, computer vision, pattern recognition, computational learning theory, big data analytics, network intelligence, signal processing, and their applications in real world. The topics covered in machine learning involve feature extraction, variants of support vector machine (SVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. The mathematical analysis of computer vision and pattern recognition involves the use of geometric techniques, scene understanding and modeling from video, 3D object recognition, localization and tracking, medical image analysis, and so on. Computational learning theory involves different kinds of learning like incremental, online, reinforcement, manifold, multitask, semi-supervised, etc. Further, it covers the real-time challenges involved while processing big data analytics and stream processing with the integration of smart data computing services and interconnectivity. Additionally, it covers the recent developments to network intelligence for analyzing the network information and thereby adapting the algorithms dynamically to improve the efficiency. In the last, it includes the progress in signal processing to process the normal and abnormal categories of real-world signals, for instance signals generated from IoT devices, smart systems, speech, videos, etc., and involves biomedical signal processing: electrocardiogram (ECG), electroencephalogram (EEG), magnetoencephalography (MEG), and electromyogram (EMG).

Artificial Intelligence and Technologies - Select Proceedings of ICRTAC-AIT 2020 (Hardcover, 1st ed. 2022): Rajeev R. Raje,... Artificial Intelligence and Technologies - Select Proceedings of ICRTAC-AIT 2020 (Hardcover, 1st ed. 2022)
Rajeev R. Raje, Farookh Hussain, R. Jagadeesh Kannan
R6,794 Discovery Miles 67 940 Ships in 10 - 15 working days

This book constitutes refereed proceedings of the 3rd International Conference on Recent Trends in Advanced Computing - Artificial Intelligence and Technologies. This book covers a wide range of topics-vision, analytics, robotics, networking, health care, current pandemic issues of COVID-19, and cutting-edge technologies connected to cybersecurity in digital manufacturing and Industry 4.0. The contents of this book will be useful to researchers from industry and academia. The volume includes novel contributions and the latest developments from researchers across industry and academia. The book will serve as a valuable reference resource for academics and researchers across the globe.

Machine Learning and Non-volatile Memories (Hardcover, 1st ed. 2022): Rino Micheloni, Cristian Zambelli Machine Learning and Non-volatile Memories (Hardcover, 1st ed. 2022)
Rino Micheloni, Cristian Zambelli
R4,316 Discovery Miles 43 160 Ships in 12 - 17 working days

This book presents the basics of both NAND flash storage and machine learning, detailing the storage problems the latter can help to solve. At a first sight, machine learning and non-volatile memories seem very far away from each other. Machine learning implies mathematics, algorithms and a lot of computation; non-volatile memories are solid-state devices used to store information, having the amazing capability of retaining the information even without power supply. This book will help the reader understand how these two worlds can work together, bringing a lot of value to each other. In particular, the book covers two main fields of application: analog neural networks (NNs) and solid-state drives (SSDs). After reviewing the basics of machine learning in Chapter 1, Chapter 2 shows how neural networks can mimic the human brain; to accomplish this result, neural networks have to perform a specific computation called vector-by-matrix (VbM) multiplication, which is particularly power hungry. In the digital domain, VbM is implemented by means of logic gates which dictate both the area occupation and the power consumption; the combination of the two poses serious challenges to the hardware scalability, thus limiting the size of the neural network itself, especially in terms of the number of processable inputs and outputs. Non-volatile memories (phase change memories in Chapter 3, resistive memories in Chapter 4, and 3D flash memories in Chapter 5 and Chapter 6) enable the analog implementation of the VbM (also called "neuromorphic architecture"), which can easily beat the equivalent digital implementation in terms of both speed and energy consumption. SSDs and flash memories are strictly coupled together; as 3D flash scales, there is a significant amount of work that has to be done in order to optimize the overall performances of SSDs. Machine learning has emerged as a viable solution in many stages of this process. After introducing the main flash reliability issues, Chapter 7 shows both supervised and un-supervised machine learning techniques that can be applied to NAND. In addition, Chapter 7 deals with algorithms and techniques for a pro-active reliability management of SSDs. Last but not least, the last section of Chapter 7 discusses the next challenge for machine learning in the context of the so-called computational storage. No doubt that machine learning and non-volatile memories can help each other, but we are just at the beginning of the journey; this book helps researchers understand the basics of each field by providing real application examples, hopefully, providing a good starting point for the next level of development.

Optimization of Tuned Mass Dampers - Using Active and Passive Control (Hardcover, 1st ed. 2022): Gebrail Bekdas, Sinan Melih... Optimization of Tuned Mass Dampers - Using Active and Passive Control (Hardcover, 1st ed. 2022)
Gebrail Bekdas, Sinan Melih Nigdeli
R5,351 Discovery Miles 53 510 Ships in 10 - 15 working days

This book is a timely book to summarize the latest developments in the optimization of tuned mass dampers covering all classical approaches and new trends including metaheuristic algorithms. Also, artificial intelligence and machine learning methods are included to predict optimum results by skipping long optimization processes. Another difference and advantage of the book are to provide chapters about several types of control types including passive tuned mass dampers, active tuned mass dampers, tuned liquid dampers, tuned liquid column dampers and inerter dampers. Tuned mass dampers (TMDs) are vibration absorber devices used in all types of mechanic systems. The key factor in the design is an effective tuning of TMDs for the desired performance. In practice, several high-rise structures and bridges were designed by including TMDs. Also, TMDs were installed after the construction of the structures after several negative experiences resulting from the disturbing sway of the structures. In optimum design, several closed-form expressions have been proposed for optimum frequency and damping ratio of TMDs, but the exact optimization requires iterative optimization approaches. The current trend is to use evolutionary algorithms and metaheuristic optimization methods to reach the goal.

Alternating Direction Method of Multipliers for Machine Learning (Hardcover, 1st ed. 2022): Zhouchen Lin, Huan Li, Cong Fang Alternating Direction Method of Multipliers for Machine Learning (Hardcover, 1st ed. 2022)
Zhouchen Lin, Huan Li, Cong Fang
R3,978 Discovery Miles 39 780 Ships in 12 - 17 working days

Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

All-in On AI - How Smart Companies Win Big with Artificial Intelligence (Hardcover): Thomas H Davenport, Nitin Mittal All-in On AI - How Smart Companies Win Big with Artificial Intelligence (Hardcover)
Thomas H Davenport, Nitin Mittal
R842 R776 Discovery Miles 7 760 Save R66 (8%) Ships in 12 - 17 working days

A fascinating look at the trailblazing companies using artificial intelligence to create new competitive advantage, from the author of the business classic, Competing on Analytics, and the head of Deloitte's US AI practice. Though most organizations are placing modest bets on artificial intelligence, there is a world-class group of companies that are going all-in on the technology and radically transforming their products, processes, strategies, customer relationships, and cultures. Though these organizations represent less than 1 percent of large companies, they are all high performers in their industries. They have better business models, make better decisions, have better relationships with their customers, offer better products and services, and command higher prices. Written by bestselling author Tom Davenport and Deloitte's Nitin Mittal, All-In on AI looks at artificial intelligence at its cutting edge from the viewpoint of established companies like Anthem, Ping An, Airbus, and Capital One. Filled with insights, strategies, and best practices, All-In on AI also provides leaders and their teams with the information they need to help their own companies take AI to the next level. If you're curious about the next phase in the implementation of artificial intelligence within companies, or if you're looking to adopt this powerful technology in a more robust way yourself, All-In on AI will give you a rare inside look at what the leading adopters are doing, while providing you with the tools to put AI at the core of everything you do.

First-order and Stochastic Optimization Methods for Machine Learning (Hardcover, 1st ed. 2020): Guanghui Lan First-order and Stochastic Optimization Methods for Machine Learning (Hardcover, 1st ed. 2020)
Guanghui Lan
R2,158 Discovery Miles 21 580 Ships in 12 - 17 working days

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Model-Based Reinforcement Learning - From Data to Continuous Actions with a Python-based Toolbox (Hardcover): M. Farsi Model-Based Reinforcement Learning - From Data to Continuous Actions with a Python-based Toolbox (Hardcover)
M. Farsi
R3,272 R3,047 Discovery Miles 30 470 Save R225 (7%) Ships in 12 - 17 working days

Model-Based Reinforcement Learning Explore a comprehensive and practical approach to reinforcement learning Reinforcement learning is an essential paradigm of machine learning, wherein an intelligent agent performs actions that ensure optimal behavior from devices. While this paradigm of machine learning has gained tremendous success and popularity in recent years, previous scholarship has focused either on theory--optimal control and dynamic programming - or on algorithms--most of which are simulation-based. Model-Based Reinforcement Learning provides a model-based framework to bridge these two aspects, thereby creating a holistic treatment of the topic of model-based online learning control. In doing so, the authors seek to develop a model-based framework for data-driven control that bridges the topics of systems identification from data, model-based reinforcement learning, and optimal control, as well as the applications of each. This new technique for assessing classical results will allow for a more efficient reinforcement learning system. At its heart, this book is focused on providing an end-to-end framework--from design to application--of a more tractable model-based reinforcement learning technique. Model-Based Reinforcement Learning readers will also find: A useful textbook to use in graduate courses on data-driven and learning-based control that emphasizes modeling and control of dynamical systems from data Detailed comparisons of the impact of different techniques, such as basic linear quadratic controller, learning-based model predictive control, model-free reinforcement learning, and structured online learning Applications and case studies on ground vehicles with nonholonomic dynamics and another on quadrator helicopters An online, Python-based toolbox that accompanies the contents covered in the book, as well as the necessary code and data Model-Based Reinforcement Learning is a useful reference for senior undergraduate students, graduate students, research assistants, professors, process control engineers, and roboticists.

Coherence - In Signal Processing and Machine Learning (Hardcover, 1st ed. 2022): David Ramirez, Ignacio Santamaria, Louis Scharf Coherence - In Signal Processing and Machine Learning (Hardcover, 1st ed. 2022)
David Ramirez, Ignacio Santamaria, Louis Scharf
R5,385 Discovery Miles 53 850 Ships in 12 - 17 working days

This book organizes principles and methods of signal processing and machine learning into the framework of coherence. The book contains a wealth of classical and modern methods of inference, some reported here for the first time. General results are applied to problems in communications, cognitive radio, passive and active radar and sonar, multi-sensor array processing, spectrum analysis, hyperspectral imaging, subspace clustering, and related. The reader will find new results for model fitting; for dimension reduction in models and ambient spaces; for detection, estimation, and space-time series analysis; for subspace averaging; and for uncertainty quantification. Throughout, the transformation invariances of statistics are clarified, geometries are illuminated, and null distributions are given where tractable. Stochastic representations are emphasized, as these are central to Monte Carlo simulations. The appendices contain a comprehensive account of matrix theory, the SVD, the multivariate normal distribution, and many of the important distributions for coherence statistics. The book begins with a review of classical results in the physical and engineering sciences where coherence plays a fundamental role. Then least squares theory and the theory of minimum mean-squared error estimation are developed, with special attention paid to statistics that may be interpreted as coherence statistics. A chapter on classical hypothesis tests for covariance structure introduces the next three chapters on matched and adaptive subspace detectors. These detectors are derived from likelihood reasoning, but it is their geometries and invariances that qualify them as coherence statistics. A chapter on independence testing in space-time data sets leads to a definition of broadband coherence, and contains novel applications to cognitive radio and the analysis of cyclostationarity. The chapter on subspace averaging reviews basic results and derives an order-fitting rule for determining the dimension of an average subspace. These results are used to enumerate sources of acoustic and electromagnetic radiation and to cluster subspaces into similarity classes. The chapter on performance bounds and uncertainty quantification emphasizes the geometry of the Cramer-Rao bound and its related information geometry.

Cluster Analysis and Applications (Hardcover, 1st ed. 2021): Rudolf Scitovski, Kristian Sabo, Francisco Martinez Alvarez, Sime... Cluster Analysis and Applications (Hardcover, 1st ed. 2021)
Rudolf Scitovski, Kristian Sabo, Francisco Martinez Alvarez, Sime Ungar
R2,014 Discovery Miles 20 140 Ships in 10 - 15 working days

With the development of Big Data platforms for managing massive amount of data and wide availability of tools for processing these data, the biggest limitation is the lack of trained experts who are qualified to process and interpret the results. This textbook is intended for graduate students and experts using methods of cluster analysis and applications in various fields. Suitable for an introductory course on cluster analysis or data mining, with an in-depth mathematical treatment that includes discussions on different measures, primitives (points, lines, etc.) and optimization-based clustering methods, Cluster Analysis and Applications also includes coverage of deep learning based clustering methods. With clear explanations of ideas and precise definitions of concepts, accompanied by numerous examples and exercises together with Mathematica programs and modules, Cluster Analysis and Applications may be used by students and researchers in various disciplines, working in data analysis or data science.

Data Analysis with Machine Learning for Psychologists - Crash Course to Learn Python 3 and Machine Learning in 10 hours... Data Analysis with Machine Learning for Psychologists - Crash Course to Learn Python 3 and Machine Learning in 10 hours (Hardcover, 1st ed. 2022)
Chandril Ghosh
R3,793 Discovery Miles 37 930 Ships in 10 - 15 working days

The power of data drives the digital economy of the 21st century. It has been argued that data is as vital a resource as oil was during the industrial revolution. An upward trend in the number of research publications using machine learning in some of the top journals in combination with an increasing number of academic recruiters within psychology asking for Python knowledge from applicants indicates a growing demand for these skills in the market. While there are plenty of books covering data science, rarely, if ever, books in the market address the need of social science students with no computer science background. They are typically written by engineers or computer scientists for people of their discipline. As a result, often such books are filled with technical jargon and examples irrelevant to psychological studies or projects. In contrast, this book was written by a psychologist in a simple, easy-to-understand way that is brief and accessible. The aim for this book was to make the learning experience on this topic as smooth as possible for psychology students/researchers with no background in programming or data science. Completing this book will also open up an enormous amount of possibilities for quantitative researchers in psychological science, as it will enable them to explore newer types of research questions.

Advances in Computer Games - Many Games, Many Challenges (Hardcover, 2004 ed.): H. Jaap van den Herik, Hiroyuki Iida, Ernst A.... Advances in Computer Games - Many Games, Many Challenges (Hardcover, 2004 ed.)
H. Jaap van den Herik, Hiroyuki Iida, Ernst A. Heinz
R4,760 Discovery Miles 47 600 Ships in 12 - 17 working days

1 feel privileged that the J(jh Advances in Computer Games Conference (ACG 10) takes place in Graz, Styria, Austria. It is the frrst time that Austria acts as host country for this major event. The series of conferences started in Edinburgh, Scotland in 1975 and was then held four times in England, three times in The Netherlands, and once in Germany. The ACG-10 conference in Graz is special in that it is organised together with the 11th World Computer Chess Championship (WCCC), the Sth Computer Olympiad (CO), and the European Union Y outh Chess Championship. The 11 th WCCC and ACG 10 take place in the Dom im Berg (Dome in the Mountain), a high-tech space with multimedia equipment, located in the Schlossberg, in the centre of the city. The help of many sponsors (large and small) is gratefully acknowledged. They will make the organisation of this conference a success. In particular, 1 would like to thank the European Union for designating Graz as the Cultural Capital of Europe 2003. There are 24 accepted contributions by participants from all over the world: Europe, Japan, USA, and Canada. The specific research results ofthe ACG 10 are expected to tind their way to general applications. The results are described in the pages that follow. The international stature together with the technical importance of this conference reaffrrms the mandate of the International Computer Games Association (ICGA) to represent the computer-games community."

Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection (Hardcover, 1st ed. 2020): Xuefeng Zhou,... Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection (Hardcover, 1st ed. 2020)
Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
R1,691 Discovery Miles 16 910 Ships in 12 - 17 working days

This open access book focuses on robot introspection, which has a direct impact on physical human-robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.

Machine Learning for Sustainable Development (Hardcover): Kamal Kant Hiran, Deepak Khazanchi, Ajay Kumar Vyas, Sanjeevikumar... Machine Learning for Sustainable Development (Hardcover)
Kamal Kant Hiran, Deepak Khazanchi, Ajay Kumar Vyas, Sanjeevikumar Padmanaban
R4,267 Discovery Miles 42 670 Ships in 12 - 17 working days

The book will focus on the applications of machine learning for sustainable development. Machine learning (ML) is an emerging technique whose diffusion and adoption in various sectors (such as energy, agriculture, internet of things, infrastructure) will be of enormous benefit. The state of the art of machine learning models is most useful for forecasting and prediction of various sectors for sustainable development.

Innovative Supply Chain Management via Digitalization and Artificial Intelligence (Hardcover, 1st ed. 2022): Kumaresan Perumal,... Innovative Supply Chain Management via Digitalization and Artificial Intelligence (Hardcover, 1st ed. 2022)
Kumaresan Perumal, Chiranji Lal Chowdhary, Logan Chella
R4,669 Discovery Miles 46 690 Ships in 12 - 17 working days

This book focuses on the impact of artificial intelligence (AI) and machine learning (ML) models on supply chain operations in industry 4.0. The chapters illustrate the AI and ML models for all functional areas of operations in SCM. The book also includes examples using ML models like handling supply-to-demand imbalances, triggering automated responses, and reinforcing customer relationships. It describes the evolution of blockchain technology coupled with the ability to automate business logic for the transparency of goods, infrastructure, products, and licenses in software. The book also includes case studies that provide a problem statement and industry overcome by applying ML and AI technologies. This book is suitable for undergraduates, postgraduates, industrial professionals, business executives, entrepreneurs, and freelancers to encourage practical learning on AI and ML algorithms in SCM 4.0. Additionally, this book will provide computer science and information system professionals with the latest technologies embedded in the corporate world.

Mathematical Theories of Machine Learning - Theory and Applications (Hardcover, 1st ed. 2020): Bin Shi, S.S. Iyengar Mathematical Theories of Machine Learning - Theory and Applications (Hardcover, 1st ed. 2020)
Bin Shi, S.S. Iyengar
R2,741 Discovery Miles 27 410 Ships in 12 - 17 working days

This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.

Empirical Approach to Machine Learning (Hardcover, 1st ed. 2019): Plamen P. Angelov, Xiaowei Gu Empirical Approach to Machine Learning (Hardcover, 1st ed. 2019)
Plamen P. Angelov, Xiaowei Gu
R5,047 Discovery Miles 50 470 Ships in 12 - 17 working days

This book provides a 'one-stop source' for all readers who are interested in a new, empirical approach to machine learning that, unlike traditional methods, successfully addresses the demands of today's data-driven world. After an introduction to the fundamentals, the book discusses in depth anomaly detection, data partitioning and clustering, as well as classification and predictors. It describes classifiers of zero and first order, and the new, highly efficient and transparent deep rule-based classifiers, particularly highlighting their applications to image processing. Local optimality and stability conditions for the methods presented are formally derived and stated, while the software is also provided as supplemental, open-source material. The book will greatly benefit postgraduate students, researchers and practitioners dealing with advanced data processing, applied mathematicians, software developers of agent-oriented systems, and developers of embedded and real-time systems. It can also be used as a textbook for postgraduate coursework; for this purpose, a standalone set of lecture notes and corresponding lab session notes are available on the same website as the code. Dimitar Filev, Henry Ford Technical Fellow, Ford Motor Company, USA, and Member of the National Academy of Engineering, USA: "The book Empirical Approach to Machine Learning opens new horizons to automated and efficient data processing." Paul J. Werbos, Inventor of the back-propagation method, USA: "I owe great thanks to Professor Plamen Angelov for making this important material available to the community just as I see great practical needs for it, in the new area of making real sense of high-speed data from the brain." Chin-Teng Lin, Distinguished Professor at University of Technology Sydney, Australia: "This new book will set up a milestone for the modern intelligent systems." Edward Tunstel, President of IEEE Systems, Man, Cybernetics Society, USA: "Empirical Approach to Machine Learning provides an insightful and visionary boost of progress in the evolution of computational learning capabilities yielding interpretable and transparent implementations."

Analog Circuits for Machine Learning, Current/Voltage/Temperature Sensors, and High-speed Communication - Advances in Analog... Analog Circuits for Machine Learning, Current/Voltage/Temperature Sensors, and High-speed Communication - Advances in Analog Circuit Design 2021 (Hardcover, 1st ed. 2022)
Pieter Harpe, Kofi A. A. Makinwa, Andrea Baschirotto
R3,591 Discovery Miles 35 910 Ships in 10 - 15 working days

This book is based on the 18 tutorials presented during the 29th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, with specific contributions focusing on analog circuits for machine learning, current/voltage/temperature sensors, and high-speed communication via wireless, wireline, or optical links. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

Machine Learning - A Guide to Current Research (Hardcover, 1986 ed.): Tom M. Mitchell, Jaime G. Carbonell, Ryszard S. Michalski Machine Learning - A Guide to Current Research (Hardcover, 1986 ed.)
Tom M. Mitchell, Jaime G. Carbonell, Ryszard S. Michalski
R7,158 Discovery Miles 71 580 Ships in 12 - 17 working days

One of the currently most active research areas within Artificial Intelligence is the field of Machine Learning. which involves the study and development of computational models of learning processes. A major goal of research in this field is to build computers capable of improving their performance with practice and of acquiring knowledge on their own. The intent of this book is to provide a snapshot of this field through a broad. representative set of easily assimilated short papers. As such. this book is intended to complement the two volumes of Machine Learning: An Artificial Intelligence Approach (Morgan-Kaufman Publishers). which provide a smaller number of in-depth research papers. Each of the 77 papers in the present book summarizes a current research effort. and provides references to longer expositions appearing elsewhere. These papers cover a broad range of topics. including research on analogy. conceptual clustering. explanation-based generalization. incremental learning. inductive inference. learning apprentice systems. machine discovery. theoretical models of learning. and applications of machine learning methods. A subject index IS provided to assist in locating research related to specific topics. The majority of these papers were collected from the participants at the Third International Machine Learning Workshop. held June 24-26. 1985 at Skytop Lodge. Skytop. Pennsylvania. While the list of research projects covered is not exhaustive. we believe that it provides a representative sampling of the best ongoing work in the field. and a unique perspective on where the field is and where it is headed.

Signal Processing and Machine Learning for Brain-Machine Interfaces (Hardcover): Toshihisa Tanaka, Mahnaz Arvaneh Signal Processing and Machine Learning for Brain-Machine Interfaces (Hardcover)
Toshihisa Tanaka, Mahnaz Arvaneh
R3,796 R3,415 Discovery Miles 34 150 Save R381 (10%) Ships in 10 - 15 working days

Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions. In this book an international panel of experts introduce signal processing and machine learning techniques for BMI/BCI and outline their practical and future applications in neuroscience, medicine, and rehabilitation, with a focus on EEG-based BMI/BCI methods and technologies. Topics covered include discriminative learning of connectivity pattern of EEG; feature extraction from EEG recordings; EEG signal processing; transfer learning algorithms in BCI; convolutional neural networks for event-related potential detection; spatial filtering techniques for improving individual template-based SSVEP detection; feature extraction and classification algorithms for image RSVP based BCI; decoding music perception and imagination using deep learning techniques; neurofeedback games using EEG-based Brain-Computer Interface Technology; affective computing system and more.

Applied Machine Learning for Assisted Living (Hardcover, 1st ed. 2022): Zia Uddin Applied Machine Learning for Assisted Living (Hardcover, 1st ed. 2022)
Zia Uddin
R4,559 Discovery Miles 45 590 Ships in 10 - 15 working days

User care at home is a matter of great concern since unforeseen circumstances might occur that affect people's well-being. Technologies that assist people in independent living are essential for enhancing care in a cost-effective and reliable manner. Assisted care applications often demand real-time observation of the environment and the resident's activities using an event-driven system. As an emerging area of research and development, it is necessary to explore the approaches of the user care system in the literature to identify current practices for future research directions. Therefore, this book is aimed at a comprehensive review of data sources (e.g., sensors) with machine learning for various smart user care systems. To encourage the readers in the field, insights of practical essence of different machine learning algorithms with sensor data (e.g., publicly available datasets) are also discussed. Some code segments are also included to motivate the researchers of the related fields to practically implement the features and machine learning techniques. It is an effort to obtain knowledge of different types of sensor-based user monitoring technologies in-home environments. With the aim of adopting these technologies, research works, and their outcomes are reported. Besides, up to date references are included for the user monitoring technologies with the aim of facilitating independent living. Research that is related to the use of user monitoring technologies in assisted living is very widespread, but it is still consists mostly of limited-scale studies. Hence, user monitoring technology is a very promising field, especially for long-term care. However, monitoring of the users for smart assisted technologies should be taken to the next level with more detailed studies that evaluate and demonstrate their potential to contribute to prolonging the independent living of people. The target of this book is to contribute towards that direction.

Machine Learning in Industry (Hardcover, 1st ed. 2022): Shubhabrata  Datta, J. Paulo Davim Machine Learning in Industry (Hardcover, 1st ed. 2022)
Shubhabrata Datta, J. Paulo Davim
R5,018 Discovery Miles 50 180 Ships in 12 - 17 working days

This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Artificial Intelligence Applications in…
Pantea Keikhosrokiani, Moussa Pourya Asl Hardcover R9,128 Discovery Miles 91 280
Machine Learning and Deep Learning in…
Mehul Mahrishi, Kamal Kant Hiran, … Hardcover R7,692 Discovery Miles 76 920
Cognitive Robotics and Adaptive…
Maki K. Habib Hardcover R2,926 Discovery Miles 29 260
Machine Learning - Architecture in the…
Phil Bernstein Paperback R1,267 R1,175 Discovery Miles 11 750
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, … Hardcover R7,578 Discovery Miles 75 780
Deep Learning Applications: In Computer…
Qi Xuan, Yun Xiang, … Hardcover R2,985 Discovery Miles 29 850
Research Anthology on Machine Learning…
Information R Management Association Hardcover R18,375 Discovery Miles 183 750
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain Hardcover R9,088 Discovery Miles 90 880
Tree-Based Machine Learning Methods in…
Sharad Saxena Hardcover R2,211 Discovery Miles 22 110
Basic Python Commands - Learn the Basic…
Manuel Mcfeely Hardcover R891 R764 Discovery Miles 7 640

 

Partners