0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (2)
  • R250 - R500 (16)
  • R500+ (2,330)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Intelligent and Cloud Computing - Proceedings of ICICC 2019, Volume 2 (Hardcover, 1st ed. 2021): Debahuti Mishra, Rajkumar... Intelligent and Cloud Computing - Proceedings of ICICC 2019, Volume 2 (Hardcover, 1st ed. 2021)
Debahuti Mishra, Rajkumar Buyya, Prasant Mohapatra, Srikanta Patnaik
R4,500 Discovery Miles 45 000 Ships in 10 - 15 working days

This book features a collection of high-quality research papers presented at the International Conference on Intelligent and Cloud Computing (ICICC 2019), held at Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India, on December 20, 2019. Including contributions on system and network design that can support existing and future applications and services, it covers topics such as cloud computing system and network design, optimization for cloud computing, networking, and applications, green cloud system design, cloud storage design and networking, storage security, cloud system models, big data storage, intra-cloud computing, mobile cloud system design, real-time resource reporting and monitoring for cloud management, machine learning, data mining for cloud computing, data-driven methodology and architecture, and networking for machine learning systems.

Machine Learning for Business Analytics - Real-Time Data Analysis for Decision-Making (Paperback): Hemachandran K, Sayantan... Machine Learning for Business Analytics - Real-Time Data Analysis for Decision-Making (Paperback)
Hemachandran K, Sayantan Khanra, Raul V. Rodriguez, Juan Jaramillo
R1,639 Discovery Miles 16 390 Ships in 9 - 17 working days

Machine Learning is an integral tool in a business analyst's arsenal because the rate at which data is being generated from different sources is increasing and working on complex unstructured data is becoming inevitable. Data collection, data cleaning, and data mining are rapidly becoming more difficult to analyze than just importing information from a primary or secondary source. The machine learning model plays a crucial role in predicting the future performance and results of a company. In real-time, data collection and data wrangling are the important steps in deploying the models. Analytics is a tool for visualizing and steering data and statistics. Business analysts can work with different datasets -- choosing an appropriate machine learning model results in accurate analyzing, forecasting the future, and making informed decisions. The global machine learning market was valued at $1.58 billion in 2017 and is expected to reach $20.83 billion in 2024 -- growing at a CAGR of 44.06% between 2017 and 2024. The authors have compiled important knowledge on machine learning real-time applications in business analytics. This book enables readers to get broad knowledge in the field of machine learning models and to carry out their future research work. The future trends of machine learning for business analytics are explained with real case studies. Essentially, this book acts as a guide to all business analysts. The authors blend the basics of data analytics and machine learning and extend its application to business analytics. This book acts as a superb introduction and covers the applications and implications of machine learning. The authors provide first-hand experience of the applications of machine learning for business analytics in the section on real-time analysis. Case studies put the theory into practice so that you may receive hands-on experience with machine learning and data analytics. This book is a valuable source for practitioners, industrialists, technologists, and researchers.

Machine Learning, Big Data, and IoT for Medical Informatics (Paperback): Pardeep Kumar, Yugal Kumar, Mohamed A. Tawhid Machine Learning, Big Data, and IoT for Medical Informatics (Paperback)
Pardeep Kumar, Yugal Kumar, Mohamed A. Tawhid; Series edited by Fatos Xhafa
R2,821 Discovery Miles 28 210 Ships in 12 - 19 working days

Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data. This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT.

Ontology of Communication - Agent-Based Data-Driven or Sign-Based Substitution-Driven? (Hardcover, 1st ed. 2023): Roland Hausser Ontology of Communication - Agent-Based Data-Driven or Sign-Based Substitution-Driven? (Hardcover, 1st ed. 2023)
Roland Hausser
R4,574 Discovery Miles 45 740 Ships in 12 - 19 working days

The book gives a comprehensive discussion of Database Semantics (DBS) as an agent-based data-driven theory of how natural language communication essentially works. In language communication, agents switch between speak mode, driven by cognition-internal content (input) resulting in cognition-external raw data (e.g. sound waves or pixels, which have no meaning or grammatical properties but can be measured by natural science), and hear mode, driven by the raw data produced by the speaker resulting in cognition-internal content. The motivation is to compare two approaches for an ontology of communication: agent-based data-driven vs. sign-based substitution-driven. Agent-based means: design of a cognitive agent with (i) an interface component for converting raw data into cognitive content (recognition) and converting cognitive content into raw data (action), (ii) an on-board, content-addressable memory (database) for the storage and content retrieval, (iii) separate treatments of the speak and the hear mode. Data-driven means: (a) mapping a cognitive content as input to the speak-mode into a language-dependent surface as output, (b) mapping a surface as input to the hear-mode into a cognitive content as output. Oppositely, sign-based means: no distinction between speak and hear mode, whereas substitution-driven means: using a single start symbol as input for generating infinitely many outputs, based on substitutions by rewrite rules. Collecting recent research of the author, this beautiful, novel and original exposition begins with an introduction to DBS, makes a linguistic detour on subject/predicate gapping and slot-filler repetition, and moves on to discuss computational pragmatics, inference and cognition, grammatical disambiguation and other related topics. The book is mostly addressed to experts working in the field of computational linguistics, as well as to enthusiasts interested in the history and early development of this subject, starting with the pre-computational foundations of theoretical computer science and symbolic logic in the 30s.

Explanation-Based Neural Network Learning - A Lifelong Learning Approach (Hardcover, 1996 ed.): Sebastian Thrun Explanation-Based Neural Network Learning - A Lifelong Learning Approach (Hardcover, 1996 ed.)
Sebastian Thrun
R4,509 Discovery Miles 45 090 Ships in 10 - 15 working days

Lifelong learning addresses situations in which a learner faces a series of different learning tasks providing the opportunity for synergy among them. Explanation-based neural network learning (EBNN) is a machine learning algorithm that transfers knowledge across multiple learning tasks. When faced with a new learning task, EBNN exploits domain knowledge accumulated in previous learning tasks to guide generalization in the new one. As a result, EBNN generalizes more accurately from less data than comparable methods. Explanation-Based Neural Network Learning: A Lifelong Learning Approach describes the basic EBNN paradigm and investigates it in the context of supervised learning, reinforcement learning, robotics, and chess. The paradigm of lifelong learning - using earlier learned knowledge to improve subsequent learning - is a promising direction for a new generation of machine learning algorithms. Given the need for more accurate learning methods, it is difficult to imagine a future for machine learning that does not include this paradigm.' From the Foreword by Tom M. Mitchell.

Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning (Hardcover, 1st ed. 2023): Saeed Mian... Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning (Hardcover, 1st ed. 2023)
Saeed Mian Qaisar, Humaira Nisar, Abdulhamit Subasi
R5,285 Discovery Miles 52 850 Ships in 12 - 19 working days

This book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems.

Artificial Intelligence of Things for Smart Green Energy Management (Hardcover, 1st ed. 2022): Sarah El Himer, Mariyam Ouaissa,... Artificial Intelligence of Things for Smart Green Energy Management (Hardcover, 1st ed. 2022)
Sarah El Himer, Mariyam Ouaissa, Abdulrahman A. A. Emhemed, Mariya Ouaissa, Zakaria Boulouard
R5,103 Discovery Miles 51 030 Ships in 10 - 15 working days

This book is intended to assist in the development of smart and efficient green energy solutions. It introduces energy systems, power generation, and power demands which able to minimise generation costs, power loss or environmental effects. It proposes cutting-edge solutions and approaches based on recent technologies such as intelligent renewable energy systems (wind and solar). These solutions, applied to different sectors, can provide a solid basis for meeting the needs of both developed and developing countries. The book provides a collection of contributions including new techniques, methods, algorithms, practical solutions and models based on applying artificial intelligence and the Internet of things into green energy management systems. It provides a comprehensive reference for researchers, scholars and industry in the field of green energy and computational intelligence.

Computational Architectures Integrating Neural and Symbolic Processes - A Perspective on the State of the Art (Hardcover, 1995... Computational Architectures Integrating Neural and Symbolic Processes - A Perspective on the State of the Art (Hardcover, 1995 ed.)
Ron Sun, Lawrence A. Bookman
R5,868 Discovery Miles 58 680 Ships in 10 - 15 working days

Computational Architectures Integrating Neural and Symbolic Processes: A Perspective on the State of the Art focuses on a currently emerging body of research. With the reemergence of neural networks in the 1980s with their emphasis on overcoming some of the limitations of symbolic AI, there is clearly a need to support some form of high-level symbolic processing in connectionist networks. As argued by many researchers, on both the symbolic AI and connectionist sides, many cognitive tasks, e.g. language understanding and common sense reasoning, seem to require high-level symbolic capabilities. How these capabilities are realized in connectionist networks is a difficult question and it constitutes the focus of this book. Computational Architectures Integrating Neural and Symbolic Processes addresses the underlying architectural aspects of the integration of neural and symbolic processes. In order to provide a basis for a deeper understanding of existing divergent approaches and provide insight for further developments in this field, this book presents: (1) an examination of specific architectures (grouped together according to their approaches), their strengths and weaknesses, why they work, and what they predict, and (2) a critique/comparison of these approaches. Computational Architectures Integrating Neural and Symbolic Processes is of interest to researchers, graduate students, and interested laymen, in areas such as cognitive science, artificial intelligence, computer science, cognitive psychology, and neurocomputing, in keeping up-to-date with the newest research trends. It is a comprehensive, in-depth introduction to this new emerging field.

Problems on Algorithms - A Comprehensive Exercise Book for Students in Software Engineering (Hardcover, 1st ed. 2022): Habib... Problems on Algorithms - A Comprehensive Exercise Book for Students in Software Engineering (Hardcover, 1st ed. 2022)
Habib Izadkhah
R2,899 Discovery Miles 28 990 Ships in 12 - 19 working days

With approximately 2500 problems, this book provides a collection of practical problems on the basic and advanced data structures, design, and analysis of algorithms. To make this book suitable for self-instruction, about one-third of the algorithms are supported by solutions, and some others are supported by hints and comments. This book is intended for students wishing to deepen their knowledge of algorithm design in an undergraduate or beginning graduate class on algorithms, for those teaching courses in this area, for use by practicing programmers who wish to hone and expand their skills, and as a self-study text for graduate students who are preparing for the qualifying examination on algorithms for a Ph.D. program in Computer Science or Computer Engineering. About all, it is a good source for exam problems for those who teach algorithms and data structure. The format of each chapter is just a little bit of instruction followed by lots of problems. This book is intended to augment the problem sets found in any standard algorithms textbook. This book * begins with four chapters on background material that most algorithms instructors would like their students to have mastered before setting foot in an algorithms class. The introductory chapters include mathematical induction, complexity notations, recurrence relations, and basic algorithm analysis methods. * provides many problems on basic and advanced data structures including basic data structures (arrays, stack, queue, and linked list), hash, tree, search, and sorting algorithms. * provides many problems on algorithm design techniques: divide and conquer, dynamic programming, greedy algorithms, graph algorithms, and backtracking algorithms. * is rounded out with a chapter on NP-completeness.

Sophisticated Electromagnetic Forward Scattering Solver via Deep Learning (Hardcover, 1st ed. 2022): Qiang Ren, Yinpeng Wang,... Sophisticated Electromagnetic Forward Scattering Solver via Deep Learning (Hardcover, 1st ed. 2022)
Qiang Ren, Yinpeng Wang, Yongzhong Li, Shutong Qi
R3,598 Discovery Miles 35 980 Ships in 10 - 15 working days

This book investigates in detail the deep learning (DL) techniques in electromagnetic (EM) near-field scattering problems, assessing its potential to replace traditional numerical solvers in real-time forecast scenarios. Studies on EM scattering problems have attracted researchers in various fields, such as antenna design, geophysical exploration and remote sensing. Pursuing a holistic perspective, the book introduces the whole workflow in utilizing the DL framework to solve the scattering problems. To achieve precise approximation, medium-scale data sets are sufficient in training the proposed model. As a result, the fully trained framework can realize three orders of magnitude faster than the conventional FDFD solver. It is worth noting that the 2D and 3D scatterers in the scheme can be either lossless medium or metal, allowing the model to be more applicable. This book is intended for graduate students who are interested in deep learning with computational electromagnetics, professional practitioners working on EM scattering, or other corresponding researchers.

Machine Learning for Data Science Handbook - Data Mining and Knowledge Discovery Handbook (Hardcover, 3rd ed. 2023): Lior... Machine Learning for Data Science Handbook - Data Mining and Knowledge Discovery Handbook (Hardcover, 3rd ed. 2023)
Lior Rokach, Oded Maimon, Erez Shmueli
R7,668 Discovery Miles 76 680 Ships in 10 - 15 working days

This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries.

Machine Learning and Data Science in the Oil and Gas Industry - Best Practices, Tools, and Case Studies (Paperback): Patrick... Machine Learning and Data Science in the Oil and Gas Industry - Best Practices, Tools, and Case Studies (Paperback)
Patrick Bangert
R3,055 Discovery Miles 30 550 Ships in 12 - 19 working days

Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value.

Methodologies and Applications of Computational Statistics for Machine Intelligence (Hardcover): Debabrata Samanta, Raghavendra... Methodologies and Applications of Computational Statistics for Machine Intelligence (Hardcover)
Debabrata Samanta, Raghavendra Rao Althar, Sabyasachi Pramanik, Soumi Dutta
R7,211 Discovery Miles 72 110 Ships in 10 - 15 working days

With the field of computational statistics growing rapidly, there is a need for capturing the advances and assessing their impact. Advances in simulation and graphical analysis also add to the pace of the statistical analytics field. Computational statistics play a key role in financial applications, particularly risk management and derivative pricing, biological applications including bioinformatics and computational biology, and computer network security applications that touch the lives of people. With high impacting areas such as these, it becomes important to dig deeper into the subject and explore the key areas and their progress in the recent past. Methodologies and Applications of Computational Statistics for Machine Intelligence serves as a guide to the applications of new advances in computational statistics. This text holds an accumulation of the thoughts of multiple experts together, keeping the focus on core computational statistics that apply to all domains. Covering topics including artificial intelligence, deep learning, and trend analysis, this book is an ideal resource for statisticians, computer scientists, mathematicians, lecturers, tutors, researchers, academic and corporate libraries, practitioners, professionals, students, and academicians.

Deep Learning - Research and Applications (Hardcover): Siddhartha Bhattacharyya, Vaclav Snasel, Aboul Ella Hassanien, Satadal... Deep Learning - Research and Applications (Hardcover)
Siddhartha Bhattacharyya, Vaclav Snasel, Aboul Ella Hassanien, Satadal Saha, B. K. Tripathy
R4,094 Discovery Miles 40 940 Ships in 12 - 19 working days

This book focuses on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it provides an insight of deep neural networks in action with illustrative coding examples. Deep learning is a new area of machine learning research which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non-immediately related fields, for example between air pressure recordings and English words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems. Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g. classification) and/or unsupervised (e.g. pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition.

Optimization in Machine Learning and Applications (Hardcover, 1st ed. 2020): Anand J. Kulkarni, Suresh Chandra Satapathy Optimization in Machine Learning and Applications (Hardcover, 1st ed. 2020)
Anand J. Kulkarni, Suresh Chandra Satapathy
R4,600 Discovery Miles 46 000 Ships in 10 - 15 working days

This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.

Machine Learning and Data Science in the Power Generation Industry - Best Practices, Tools, and Case Studies (Paperback):... Machine Learning and Data Science in the Power Generation Industry - Best Practices, Tools, and Case Studies (Paperback)
Patrick Bangert
R2,952 Discovery Miles 29 520 Ships in 12 - 19 working days

Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study-driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting.

Artificial Intelligence, Machine Learning, and Optimization Tools for Smart Cities - Designing for Sustainability (Hardcover,... Artificial Intelligence, Machine Learning, and Optimization Tools for Smart Cities - Designing for Sustainability (Hardcover, 1st ed. 2022)
Panos M. Pardalos, Stamatina Th. Rassia, Arsenios Tsokas
R1,940 Discovery Miles 19 400 Ships in 12 - 19 working days

This volume offers a wealth of interdisciplinary approaches to artificial intelligence, machine learning and optimization tools, which contribute to the optimization of urban features towards forming smart, sustainable, and livable future cities. Special features include: New research on the design of city elements and smart systems with respect to new technologies and scientific thinking Discussions on the theoretical background that lead to smart cities for the future New technologies and principles of research that can promote ideas of artificial intelligence and machine learning in optimized urban environments The book engages students and researchers in the subjects of artificial intelligence, machine learning, and optimization tools in smart sustainable cities as eminent international experts contribute their research results and thinking in its chapters. Overall, its audience can benefit from a variety of disciplines including, architecture, engineering, physics, mathematics, computer science, and related fields.

Optimization for Data Analysis (Hardcover): Stephen J Wright, Benjamin Recht Optimization for Data Analysis (Hardcover)
Stephen J Wright, Benjamin Recht
R1,282 Discovery Miles 12 820 Ships in 12 - 19 working days

Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.

Hybrid Random Fields - A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models (Hardcover,... Hybrid Random Fields - A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models (Hardcover, 2011 ed.)
Antonino Freno, Edmondo Trentin
R3,000 Discovery Miles 30 000 Ships in 10 - 15 working days

This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives. -- Manfred Jaeger, Aalborg Universitet The book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. ...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it. -- Marco Gori, Universita degli Studi di Siena Graphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.

Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning (Hardcover, 1st ed. 2021): Uday Kamath,... Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning (Hardcover, 1st ed. 2021)
Uday Kamath, John Liu
R3,906 Discovery Miles 39 060 Ships in 12 - 19 working days

This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I'm pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I've seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group

Event Mining for Explanatory Modeling (Hardcover): Laleh Jalali, Ramesh Jain Event Mining for Explanatory Modeling (Hardcover)
Laleh Jalali, Ramesh Jain
R1,712 R1,318 Discovery Miles 13 180 Save R394 (23%) Ships in 12 - 19 working days

This book introduces the concept of Event Mining for building explanatory models from analyses of correlated data. Such a model may be used as the basis for predictions and corrective actions. The idea is to create, via an iterative process, a model that explains causal relationships in the form of structural and temporal patterns in the data. The first phase is the data-driven process of hypothesis formation, requiring the analysis of large amounts of data to find strong candidate hypotheses. The second phase is hypothesis testing, wherein a domain expert's knowledge and judgment is used to test and modify the candidate hypotheses. The book is intended as a primer on Event Mining for data-enthusiasts and information professionals interested in employing these event-based data analysis techniques in diverse applications. The reader is introduced to frameworks for temporal knowledge representation and reasoning, as well as temporal data mining and pattern discovery. Also discussed are the design principles of event mining systems. The approach is reified by the presentation of an event mining system called EventMiner, a computational framework for building explanatory models. The book contains case studies of using EventMiner in asthma risk management and an architecture for the objective self. The text can be used by researchers interested in harnessing the value of heterogeneous big data for designing explanatory event-based models in diverse application areas such as healthcare, biological data analytics, predictive maintenance of systems, computer networks, and business intelligence.

Graph Neural Networks: Foundations, Frontiers, and Applications (Hardcover, 1st ed. 2022): Lingfei Wu, Peng Cui, Jian Pei,... Graph Neural Networks: Foundations, Frontiers, and Applications (Hardcover, 1st ed. 2022)
Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao
R3,265 Discovery Miles 32 650 Ships in 12 - 19 working days

Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data, such as images or sequence data, and not immediately applicable to graph-structured data such as text. This gap has driven a wave of research for deep learning on graphs, including graph representation learning, graph generation, and graph classification. The new neural network architectures on graph-structured data (graph neural networks, GNNs in short) have performed remarkably on these tasks, demonstrated by applications in social networks, bioinformatics, and medical informatics. Despite these successes, GNNs still face many challenges ranging from the foundational methodologies to the theoretical understandings of the power of the graph representation learning. This book provides a comprehensive introduction of GNNs. It first discusses the goals of graph representation learning and then reviews the history, current developments, and future directions of GNNs. The second part presents and reviews fundamental methods and theories concerning GNNs while the third part describes various frontiers that are built on the GNNs. The book concludes with an overview of recent developments in a number of applications using GNNs. This book is suitable for a wide audience including undergraduate and graduate students, postdoctoral researchers, professors and lecturers, as well as industrial and government practitioners who are new to this area or who already have some basic background but want to learn more about advanced and promising techniques and applications.

Cybernetics 2.0 - A General Theory of Adaptivity and Homeostasis in the Brain and in the Body (Hardcover, 1st ed. 2023):... Cybernetics 2.0 - A General Theory of Adaptivity and Homeostasis in the Brain and in the Body (Hardcover, 1st ed. 2023)
Bernard Widrow
R3,164 Discovery Miles 31 640 Ships in 10 - 15 working days

This book takes the notions of adaptivity and learning from the realm of engineering into the realm of biology and natural processes. It introduces a Hebbian-LMS algorithm, an integration of unsupervised Hebbian learning and supervised LMS learning in neural networks, as a mathematical representation of a general theory for synaptic learning in the brain, and adaptation and functional control of homeostasis in living systems. Written in a language that is able to address students and scientists with different backgrounds, this book accompanies readers on a unique journey through various homeostatic processes in living organisms, such as body temperature control and synaptic plasticity, explaining how the Hebbian-LMS algorithm can help understand them, and suggesting some open questions for future research. It also analyses cell signalling pathways from an unusual perspective, where hormones and hormone receptors are shown to be regulated via the principles of the Hebbian-LMS algorithm. It further discusses addiction and pain, and various kinds of mood disorders alike, showing how they can be modelled with the Hebbian-LMS algorithm. For the first time, the Hebbian-LMS algorithm, which has been derived from a combination of Hebbian theory from the neuroscience field and the LMS algorithm from the engineering field of adaptive signal processing, becomes a potent model for understanding how biological regulation works. Thus, this book is breaking new ground in neuroscience by providing scientists with a general theory for how nature does control synaptic learning. It then goes beyond that, showing that the same principles apply to hormone-mediated regulation of physiological processes. In turn, the book tackles in more depth the concept of learning. It covers computer simulations and strategies for training neural networks with the Hebbian-LMS algorithm, demonstrating that the resulting algorithms are able to identify relationships between unknown input patterns. It shows how this can translate in useful ideas to understand human memory and design cognitive structures. All in all, this book offers an absolutely, unique, inspiring reading for biologists, physiologists, and engineers, paving the way for future studies on what we could call the nature's secret learning algorithm.

Embedded Analytics - Integrating Analysis with the Business Workflow (Paperback): Donald Farmer Embedded Analytics - Integrating Analysis with the Business Workflow (Paperback)
Donald Farmer
R1,181 R1,037 Discovery Miles 10 370 Save R144 (12%) Ships in 12 - 19 working days

Embedded Analytics is one of the hottest trends in business intelligence right now. It's being used in multiple ways to improve decision making, provide faster insights, gain competitive advantages and grow revenue. Over the last 10 years, data analytics and data visualization have become essential components of an enterprise information strategy. Nevertheless, despite this recognition, the adoption of data analytics has remained remarkably static - perhaps reaching no more than thirty percent of potential users. This book explores the most important techniques for taking that adoption further: embedding analytics into the workflow of our everyday operations.

Connectionist Approaches to Language Learning (Hardcover, Reprinted from Machine Learning, Volume 7:2/3): David Touretzky Connectionist Approaches to Language Learning (Hardcover, Reprinted from Machine Learning, Volume 7:2/3)
David Touretzky
R2,957 Discovery Miles 29 570 Ships in 10 - 15 working days

arise automatically as a result of the recursive structure of the task and the continuous nature of the SRN's state space. Elman also introduces a new graphical technique for study ing network behavior based on principal components analysis. He shows that sentences with multiple levels of embedding produce state space trajectories with an intriguing self similar structure. The development and shape of a recurrent network's state space is the subject of Pollack's paper, the most provocative in this collection. Pollack looks more closely at a connectionist network as a continuous dynamical system. He describes a new type of machine learning phenomenon: induction by phase transition. He then shows that under certain conditions, the state space created by these machines can have a fractal or chaotic structure, with a potentially infinite number of states. This is graphically illustrated using a higher-order recurrent network trained to recognize various regular languages over binary strings. Finally, Pollack suggests that it might be possible to exploit the fractal dynamics of these systems to achieve a generative capacity beyond that of finite-state machines."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
COBOL Basic Training Using VSAM, IMS…
Robert Wingate Hardcover R1,795 R1,493 Discovery Miles 14 930
Advances in Critical Flow Dynamics…
Marianna Braza, Kerry Hourigan, … Hardcover R7,667 Discovery Miles 76 670
Get Started Programming with Python…
Manuel Mcfeely Hardcover R821 R710 Discovery Miles 7 100
GNU Emacs LISP Reference Manual
Bil Lewis, Dan Laliberte, … Hardcover R1,833 Discovery Miles 18 330
A C/OS-III for the Renesas RX62N
J Labrosse Jean, Kovalski Fabiano Hardcover R1,927 Discovery Miles 19 270
Research Anthology on Recent Trends…
Information Reso Management Association Hardcover R10,628 Discovery Miles 106 280
Cyanobacterial Lifestyle and its…
Prashant Kumar Singh, Maria F. Fillat, … Paperback R4,171 Discovery Miles 41 710
Enzymes as Sensors, Volume 589
Richard Thompson, Carol A. Fierke Hardcover R4,822 Discovery Miles 48 220
Poly(lactic-co-glycolic acid) (PLGA…
Prashant Kesharwani Paperback R4,858 Discovery Miles 48 580
Developing Sustainable and Health…
Marianna Rakszegi, Maria Papageorgiou, … Paperback R5,270 Discovery Miles 52 700

 

Partners