![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Written in accessible language without mathematical formulas, this short book provides an overview of the wide and varied applications of artificial intelligence (AI) across the spectrum of physical sciences. Focusing in particular on AI's ability to extract patterns from data, known as machine learning (ML), the book includes a chapter on important machine learning algorithms and their respective applications in physics. It then explores the use of ML across a number of important sub-fields in more detail, ranging from particle, molecular and condensed matter physics, to astrophysics, cosmology and the theory of everything. The book covers such applications as the search for new particles and the detection of gravitational waves from the merging of black holes, and concludes by discussing what the future may hold.
Autonomous Mobile Robots: Planning, Navigation, and Simulation presents detailed coverage of the domain of robotics in motion planning and associated topics in navigation. This book covers numerous base planning methods from diverse schools of learning, including deliberative planning methods, reactive planning methods, task planning methods, fusion of different methods, and cognitive architectures. It is a good resource for doing initial project work in robotics, providing an overview, methods and simulation software in one resource. For more advanced readers, it presents a variety of planning algorithms to choose from, presenting the tradeoffs between the algorithms to ascertain a good choice. Finally, the book presents fusion mechanisms to design hybrid algorithms.
Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.
This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.
Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.
Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory is a survey of some important theoretical contributions, many of which have been proposed and developed in the Foundations of Genetic Algorithms series of workshops. However, this theoretical work is still rather fragmented, and the authors believe that it is the right time to provide the field with a systematic presentation of the current state of theory in the form of a set of theoretical perspectives. The authors do this in the interest of providing students and researchers with a balanced foundational survey of some recent research on GAs. The scope of the book includes chapter-length discussions of Basic Principles, Schema Theory, "No Free Lunch," GAs and Markov Processes, Dynamical Systems Model, Statistical Mechanics Approximations, Predicting GA Performance, Landscapes and Test Problems.
This book collects selected papers by authors for CODATA 2006, which are relevant to the acquisition of knowledge and the assessment of risk and opportunity that comes from combining data from a number of different disciplines.
This book sheds light on processes associated with the construction of cognitive maps, that is to say, with the construction of internal representations of very large spatial entities such as towns, cities, neighborhoods, landscapes, metropolitan areas, environments and the like. Because of their size, such entities can never be seen in their entirety, and consequently one constructs their internal representation by means of visual, as well as non-visual, modes of sensation and information - text, auditory, haptic and olfactory means for example - or by inference. Intersensory coordination and information transfer thus play a crucial role in the construction of cognitive maps. Because it involves a multiplicity of sensational and informational modes, the issue of cognitive maps does not fall into any single traditional cognitive field, but rather into, and often in between, several of them. Thus, although one is dealing here with processes associated with almost every aspect of our daily life, the subject has received relatively marginal scientific attention. The book is directed to researchers and students of cognitive mapping and environmental cognition. In particular it focuses on the cognitive processes by which one form of information, say haptic, is being transformed into another, say a visual image, and by which multiple forms of information participate in constructing cognitive maps.
What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.
Machine Conversationsis a collection of some of the best research available in the practical arts of machine conversation. The book describes various attempts to create practical and flexible machine conversation - ways of talking to computers in an unrestricted version of English or some other language. While this book employs and advances the theory of dialogue and its linguistic underpinnings, the emphasis is on practice, both in university research laboratories and in company research and development. Since the focus is on the task and on the performance, this book provides some of the first-rate work taking place in industry, quite apart from the academic tradition. It also reveals striking and relevant facts about the tone of machine conversations and closely evaluates what users require. Machine Conversations is an excellent reference for researchers interested in computational linguistics, cognitive science, natural language processing, artificial intelligence, human computer interfaces and machine learning.
The IMA Workshop on Evolutionary Algorithms brought together many of the top researchers in the area of Evolutionary Computation for a week of intensive interaction. The field of Evolutionary Computation has developed significantly over the past 30 years and today consists of a variety of subfields such as genetic algorithms, evolution strategies, evolutionary programming, and genetic programming, each with its own algorithmic perspectives and goals. The workshop did a great deal to clarify the current state of the theory of Evolutionary Algorithms. The existing theory might be characterized as deriving from two principal approaches. There is a high level macro-theory that looks at the processing of "building blocks" and "schemata" that are shared by many good solutions when searching a problem space. There is also a low level micro-theory that builds exact Markov models of the search process. It is sometimes hard for researchers working at such different levels of abstraction to interact. The IMA workshop allowed researchers working at these different levels to present their points of view and to move toward common ground. There was real progress in communication between theorists and practitioners in the evolutionary computation field. Speakers presented applications across a wide range of problem areas. In some of those cases, theoretically motivated methods work quite well. In other cases, practitioners used domain-based methods to obtain better performance than could be achieved by using a "pure" evolutionary algorithm. Individuals on both sides went away with a better appreciation of the successes and failures of current theory.
This book highlights selected papers from the Mechanical Engineering track, with a focus on mechatronics and manufacturing, presented at the "Malaysian Technical Universities Conference on Engineering and Technology" (MUCET 2019). The conference brings together researchers and professionals in the fields of engineering, research and technology, providing a platform for future collaborations and the exchange of ideas.
This book includes the proceedings of the fourth workshop on recommender systems in fashion and retail (2022), and it aims to present a state-of-the-art view of the advancements within the field of recommendation systems with focused application to e-commerce, retail, and fashion by presenting readers with chapters covering contributions from academic as well as industrial researchers active within this emerging new field. Recommender systems are often used to solve different complex problems in this scenario, such as product recommendations, size and fit recommendations, and social media-influenced recommendations (outfits worn by influencers).
This book presents innovative work in Climate Informatics, a new field that reflects the application of data mining methods to climate science, and shows where this new and fast growing field is headed. Given its interdisciplinary nature, Climate Informatics offers insights, tools and methods that are increasingly needed in order to understand the climate system, an aspect which in turn has become crucial because of the threat of climate change. There has been a veritable explosion in the amount of data produced by satellites, environmental sensors and climate models that monitor, measure and forecast the earth system. In order to meaningfully pursue knowledge discovery on the basis of such voluminous and diverse datasets, it is necessary to apply machine learning methods, and Climate Informatics lies at the intersection of machine learning and climate science. This book grew out of the fourth workshop on Climate Informatics held in Boulder, Colorado in Sep. 2014.
Autonomous agents or multiagent systems are computational systems in which several computational agents interact or work together to perform some set of tasks. These systems may involve computational agents having common goals or distinct goals. Real-Time Search for Learning Autonomous Agents focuses on extending real-time search algorithms for autonomous agents and for a multiagent world. Although real-time search provides an attractive framework for resource-bounded problem solving, the behavior of the problem solver is not rational enough for autonomous agents. The problem solver always keeps the record of its moves and the problem solver cannot utilize and improve previous experiments. Other problems are that although the algorithms interleave planning and execution, they cannot be directly applied to a multiagent world. The problem solver cannot adapt to the dynamically changing goals and the problem solver cannot cooperatively solve problems with other problem solvers. This book deals with all these issues. Real-Time Search for Learning Autonomous Agents serves as an excellent resource for researchers and engineers interested in both practical references and some theoretical basis for agent/multiagent systems. The book can also be used as a text for advanced courses on the subject.
Image Modeling and Retrieval; E. Vicario. Efficient and Effective Nearest Neighbor Search in a Medical Image Database of Tumor Shapes; F. Korn, et al. Shape-Similarity-Based Retrieval in Image Databases; R. Mehrotra, J.E. Gary. Color Angular Indexing and Image Retrieval; G.D. Finlayson, et al. Indexing Color-Texture Image Patterns; A.D. Ventura, et al. Iconic Indexing for Visual Databases; Q-L. Zhang, S-K. Chang. Using Weighted Spatial Relationships in Retrieval by Visual Contents; A. Del Bimbo, et al.. Index.
Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).
This book offers a brief but effective introduction to quantum machine learning (QML). QML is not merely a translation of classical machine learning techniques into the language of quantum computing, but rather a new approach to data representation and processing. Accordingly, the content is not divided into a "classical part" that describes standard machine learning schemes and a "quantum part" that addresses their quantum counterparts. Instead, to immerse the reader in the quantum realm from the outset, the book starts from fundamental notions of quantum mechanics and quantum computing. Avoiding unnecessary details, it presents the concepts and mathematical tools that are essential for the required quantum formalism. In turn, it reviews those quantum algorithms most relevant to machine learning. Later chapters highlight the latest advances in this field and discuss the most promising directions for future research. To gain the most from this book, a basic grasp of statistics and linear algebra is sufficient; no previous experience with quantum computing or machine learning is needed. The book is aimed at researchers and students with no background in quantum physics and is also suitable for physicists looking to enter the field of QML.
This book focuses on privacy and security concerns in big data and differentiates between privacy and security and privacy requirements in big data. It focuses on the results obtained after applying a systematic mapping study and implementation of security in the big data for utilizing in business under the establishment of "Business Intelligence". The chapters start with the definition of big data, discussions why security is used in business infrastructure and how the security can be improved. In this book, some of the data security and data protection techniques are focused and it presents the challenges and suggestions to meet the requirements of computing, communication and storage capabilities for data mining and analytics applications with large aggregate data in business.
Intelligent systems of the natural kind are adaptive and robust: they learn over time and degrade gracefully under stress. If artificial systems are to display a similar level of sophistication, an organizing framework and operating principles are required to manage the resulting complexity of design and behavior. This book presents a general framework for adaptive systems. The utility of the comprehensive framework is demonstrated by tailoring it to particular models of computational learning, ranging from neural networks to declarative logic. The key to robustness lies in distributed decision making. An exemplar of this strategy is the neural network in both its biological and synthetic forms. In a neural network, the knowledge is encoded in the collection of cells and their linkages, rather than in any single component. Distributed decision making is even more apparent in the case of independent agents. For a population of autonomous agents, their proper coordination may well be more instrumental for attaining their objectives than are their individual capabilities. This book probes the problems and opportunities arising from autonomous agents acting individually and collectively. Following the general framework for learning systems and its application to neural networks, the coordination of independent agents through game theory is explored. Finally, the utility of game theory for artificial agents is revealed through a case study in robotic coordination. Given the universality of the subjects -- learning behavior and coordinative strategies in uncertain environments -- this book will be of interest to students and researchers in various disciplines, ranging from all areas of engineering to the computing disciplines; from the life sciences to the physical sciences; and from the management arts to social studies.
This book provides an introduction to next generation smart screening technology for medical image analysis that combines artificial intelligence (AI) techniques with digital screening to develop innovative methods for detecting breast cancer. The authors begin with a discussion of breast cancer, its characteristics and symptoms, and the importance of early screening.They then provide insight on the role of artificial intelligence in global healthcare, screening methods for breast cancer using mammogram, ultrasound, and thermogram images, and the potential benefits of using AI-based systems for clinical screening to more accurately detect, diagnose, and treat breast cancer. Discusses various existing screening methods for breast cancer Presents deep information on artificial intelligence-based screening methods Discusses cancer treatment based on geographical differences and cultural characteristics
This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior. The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks. This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one. Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis. Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction; Describes new, hybrid solutions for model order reduction; Presents machine learning algorithms in depth, but simply; Uses real, industrial applications to verify algorithms.
The Logic Programming Tutor (LPT) assumes no prior knowledge or experience of Prolog. The book is designed as a teaching tool to be used in conjunction with a computer program of the same name which is offered free of charge on disk. The LPT is essentially a user friendly front-end that can accept either Prolog or an English-like notation, and translate between one and the other. There is a built-in editor which can display sections from one of several scripts' written by an instructor; these guide the student in learning Prolog by experimentation. The book is divided into two parts. Part I describes in detail how the Tutor works, and finishes with a complete listing of the source code. Because the Tutor's editor and the script handler are independent of the programming language it accepts, it will be of interest not only to teachers of Prolog, but also to those teaching other logic-based languages built on it -- for example, frame-based or object-oriented languages. Part II contains the scripts and supplementary exercises used with the LPT at Oxford University. Each script is accompanied by notes to the teacher, giving answers to exercises, and indicating problems and misconceptions that students have experienced. |
![]() ![]() You may like...
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
|