0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (5)
  • R250 - R500 (25)
  • R500+ (2,331)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Machine Learning in Biological Sciences - Updates and Future Prospects (Hardcover, 1st ed. 2022): Shyamasree Ghosh, Rathi... Machine Learning in Biological Sciences - Updates and Future Prospects (Hardcover, 1st ed. 2022)
Shyamasree Ghosh, Rathi Dasgupta
R4,686 Discovery Miles 46 860 Ships in 12 - 17 working days

This book gives an overview of applications of Machine Learning (ML) in diverse fields of biological sciences, including healthcare, animal sciences, agriculture, and plant sciences. Machine learning has major applications in process modelling, computer vision, signal processing, speech recognition, and language understanding and processing and life, and health sciences. It is increasingly used in understanding DNA patterns and in precision medicine. This book is divided into eight major sections, each containing chapters that describe the application of ML in a certain field. The book begins by giving an introduction to ML and the various ML methods. It then covers interesting and timely aspects such as applications in genetics, cell biology, the study of plant-pathogen interactions, and animal behavior. The book discusses computational methods for toxicity prediction of environmental chemicals and drugs, which forms a major domain of research in the field of biology. It is of relevance to post-graduate students and researchers interested in exploring the interdisciplinary areas of use of machine learning and deep learning in life sciences.

Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning (Hardcover, 2015 ed.):... Identifying Product and Process State Drivers in Manufacturing Systems Using Supervised Machine Learning (Hardcover, 2015 ed.)
Thorsten Wuest
R3,075 Discovery Miles 30 750 Ships in 10 - 15 working days

The book reports on a novel approach for holistically identifying the relevant state drivers of complex, multi-stage manufacturing systems. This approach is able to utilize complex, diverse and high-dimensional data sets, which often occur in manufacturing applications, and to integrate the important process intra- and interrelations. The approach has been evaluated using three scenarios from different manufacturing domains (aviation, chemical and semiconductor). The results, which are reported in detail in this book, confirmed that it is possible to incorporate implicit process intra- and interrelations on both a process and programme level by applying SVM-based feature ranking. In practice, this method can be used to identify the most important process parameters and state characteristics, the so-called state drivers, of a manufacturing system. Given the increasing availability of data and information, this selection support can be directly utilized in, e.g., quality monitoring and advanced process control. Importantly, the method is neither limited to specific products, manufacturing processes or systems, nor by specific quality concepts.

Unsupervised Learning Algorithms (Hardcover, 1st ed. 2016): M. Emre Celebi, Kemal Aydin Unsupervised Learning Algorithms (Hardcover, 1st ed. 2016)
M. Emre Celebi, Kemal Aydin
R5,701 R3,998 Discovery Miles 39 980 Save R1,703 (30%) Ships in 12 - 17 working days

This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.

Big Data Preprocessing - Enabling Smart Data (Hardcover, 1st ed. 2020): Julian Luengo, Diego Garcia-Gil, Sergio... Big Data Preprocessing - Enabling Smart Data (Hardcover, 1st ed. 2020)
Julian Luengo, Diego Garcia-Gil, Sergio Ramirez-Gallego, Salvador Garcia, Francisco Herrera
R2,377 Discovery Miles 23 770 Ships in 10 - 15 working days

This book offers a comprehensible overview of Big Data Preprocessing, which includes a formal description of each problem. It also focuses on the most relevant proposed solutions. This book illustrates actual implementations of algorithms that helps the reader deal with these problems. This book stresses the gap that exists between big, raw data and the requirements of quality data that businesses are demanding. This is called Smart Data, and to achieve Smart Data the preprocessing is a key step, where the imperfections, integration tasks and other processes are carried out to eliminate superfluous information. The authors present the concept of Smart Data through data preprocessing in Big Data scenarios and connect it with the emerging paradigms of IoT and edge computing, where the end points generate Smart Data without completely relying on the cloud. Finally, this book provides some novel areas of study that are gathering a deeper attention on the Big Data preprocessing. Specifically, it considers the relation with Deep Learning (as of a technique that also relies in large volumes of data), the difficulty of finding the appropriate selection and concatenation of preprocessing techniques applied and some other open problems. Practitioners and data scientists who work in this field, and want to introduce themselves to preprocessing in large data volume scenarios will want to purchase this book. Researchers that work in this field, who want to know which algorithms are currently implemented to help their investigations, may also be interested in this book.

Deep Learning-Based Face Analytics (Hardcover, 1st ed. 2021): Nalini K. Ratha, Vishal M. Patel, Rama Chellappa Deep Learning-Based Face Analytics (Hardcover, 1st ed. 2021)
Nalini K. Ratha, Vishal M. Patel, Rama Chellappa
R5,392 Discovery Miles 53 920 Ships in 12 - 17 working days

This book provides an overview of different deep learning-based methods for face recognition and related problems. Specifically, the authors present methods based on autoencoders, restricted Boltzmann machines, and deep convolutional neural networks for face detection, localization, tracking, recognition, etc. The authors also discuss merits and drawbacks of available approaches and identifies promising avenues of research in this rapidly evolving field. Even though there have been a number of different approaches proposed in the literature for face recognition based on deep learning methods, there is not a single book available in the literature that gives a complete overview of these methods. The proposed book captures the state of the art in face recognition using various deep learning methods, and it covers a variety of different topics related to face recognition. This book is aimed at graduate students studying electrical engineering and/or computer science. Biometrics is a course that is widely offered at both undergraduate and graduate levels at many institutions around the world: This book can be used as a textbook for teaching topics related to face recognition. In addition, the work is beneficial to practitioners in industry who are working on biometrics-related problems. The prerequisites for optimal use are the basic knowledge of pattern recognition, machine learning, probability theory, and linear algebra.

Machine Learning for Cyber Agents - Attack and Defence (Hardcover, 1st ed. 2022): Stanislav Abaimov, Maurizio Martellini Machine Learning for Cyber Agents - Attack and Defence (Hardcover, 1st ed. 2022)
Stanislav Abaimov, Maurizio Martellini
R3,813 Discovery Miles 38 130 Ships in 10 - 15 working days

The cyber world has been both enhanced and endangered by AI. On the one hand, the performance of many existing security services has been improved, and new tools created. On the other, it entails new cyber threats both through evolved attacking capacities and through its own imperfections and vulnerabilities. Moreover, quantum computers are further pushing the boundaries of what is possible, by making machine learning cyber agents faster and smarter. With the abundance of often-confusing information and lack of trust in the diverse applications of AI-based technologies, it is essential to have a book that can explain, from a cyber security standpoint, why and at what stage the emerging, powerful technology of machine learning can and should be mistrusted, and how to benefit from it while avoiding potentially disastrous consequences. In addition, this book sheds light on another highly sensitive area - the application of machine learning for offensive purposes, an aspect that is widely misunderstood, under-represented in the academic literature and requires immediate expert attention.

Dimensionality Reduction in Data Science (Hardcover, 1st ed. 2022): Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar,... Dimensionality Reduction in Data Science (Hardcover, 1st ed. 2022)
Max Garzon, Ching-Chi Yang, Deepak Venugopal, Nirman Kumar, Kalidas Jana, …
R2,013 Discovery Miles 20 130 Ships in 10 - 15 working days

This book provides a practical and fairly comprehensive review of Data Science through the lens of dimensionality reduction, as well as hands-on techniques to tackle problems with data collected in the real world. State-of-the-art results and solutions from statistics, computer science and mathematics are explained from the point of view of a practitioner in any domain science, such as biology, cyber security, chemistry, sports science and many others. Quantitative and qualitative assessment methods are described to implement and validate the solutions back in the real world where the problems originated. The ability to generate, gather and store volumes of data in the order of tera- and exo bytes daily has far outpaced our ability to derive useful information with available computational resources for many domains. This book focuses on data science and problem definition, data cleansing, feature selection and extraction, statistical, geometric, information-theoretic, biomolecular and machine learning methods for dimensionality reduction of big datasets and problem solving, as well as a comparative assessment of solutions in a real-world setting. This book targets professionals working within related fields with an undergraduate degree in any science area, particularly quantitative. Readers should be able to follow examples in this book that introduce each method or technique. These motivating examples are followed by precise definitions of the technical concepts required and presentation of the results in general situations. These concepts require a degree of abstraction that can be followed by re-interpreting concepts like in the original example(s). Finally, each section closes with solutions to the original problem(s) afforded by these techniques, perhaps in various ways to compare and contrast dis/advantages to other solutions.

Mathematics for Machine Learning (Paperback): Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong Mathematics for Machine Learning (Paperback)
Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
R1,421 R1,342 Discovery Miles 13 420 Save R79 (6%) Ships in 12 - 17 working days

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines - Theory, Algorithms and Applications... Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines - Theory, Algorithms and Applications (Hardcover, 1st ed. 2023)
Jamal Amani Rad, Kourosh Parand, Snehashish Chakraverty
R3,969 Discovery Miles 39 690 Ships in 12 - 17 working days

This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations. On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.

Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms... Genetic Algorithms and their Applications - Proceedings of the Second International Conference on Genetic Algorithms (Paperback)
John J. Grefenstette
R1,621 Discovery Miles 16 210 Ships in 12 - 17 working days

First Published in 1987. Routledge is an imprint of Taylor & Francis, an informa company.

IRC-SET 2021 - Proceedings of the 7th IRC Conference on Science, Engineering and Technology,  August 2021, Singapore... IRC-SET 2021 - Proceedings of the 7th IRC Conference on Science, Engineering and Technology, August 2021, Singapore (Hardcover, 1st ed. 2022)
Huaqun Guo, Hongliang Ren, Victor Wang, Eyasu Getahun Chekole, Umayal Lakshmanan
R4,727 Discovery Miles 47 270 Ships in 12 - 17 working days

This book highlights contemporary state of research in multidisciplinary areas in computer science, computer engineering, chemical engineering, mechanical engineering, physics, biomedical sciences, life sciences, medicine, and health care. The accepted submissions to the 7th IRC Conference on Science, Engineering and Technology (IRC-SET 2021) that were presented on August 7, 2021, are published in this conference proceedings. The papers presented here were shortlisted after extensive rounds of rigorous reviews by a panel of esteemed individuals who are pioneers and experts in their respective domains.

Efficient and Accurate Parallel Genetic Algorithms (Hardcover, 2001 ed.): Erick Cantu-Paz Efficient and Accurate Parallel Genetic Algorithms (Hardcover, 2001 ed.)
Erick Cantu-Paz
R3,017 Discovery Miles 30 170 Ships in 10 - 15 working days

As genetic algorithms (GAs) become increasingly popular, they are applied to difficult problems that may require considerable computations. In such cases, parallel implementations of GAs become necessary to reach high-quality solutions in reasonable times. But, even though their mechanics are simple, parallel GAs are complex non-linear algorithms that are controlled by many parameters, which are not well understood. Efficient and Accurate Parallel Genetic Algorithms is about the design of parallel GAs. It presents theoretical developments that improve our understanding of the effect of the algorithm's parameters on its search for quality and efficiency. These developments are used to formulate guidelines on how to choose the parameter values that minimize the execution time while consistently reaching solutions of high quality. Efficient and Accurate Parallel Genetic Algorithms can be read in several ways, depending on the readers' interests and their previous knowledge about these algorithms. Newcomers to the field will find the background material in each chapter useful to become acquainted with previous work, and to understand the problems that must be faced to design efficient and reliable algorithms. Potential users of parallel GAs that may have doubts about their practicality or reliability may be more confident after reading this book and understanding the algorithms better. Those who are ready to try a parallel GA on their applications may choose to skim through the background material, and use the results directly without following the derivations in detail. These readers will find that using the results can help them to choose the type of parallel GA that best suits their needs, without having to invest the time to implement and test various options. Once that is settled, even the most experienced users dread the long and frustrating experience of configuring their algorithms by trial and error. The guidelines contained herein will shorten dramatically the time spent tweaking the algorithm, although some experimentation may still be needed for fine-tuning. Efficient and Accurate Parallel Genetic Algorithms is suitable as a secondary text for a graduate level course, and as a reference for researchers and practitioners in industry.

Mathematical Aspects of Deep Learning (Hardcover): Philipp Grohs, Gitta Kutyniok Mathematical Aspects of Deep Learning (Hardcover)
Philipp Grohs, Gitta Kutyniok
R2,385 R2,217 Discovery Miles 22 170 Save R168 (7%) Ships in 12 - 17 working days

In recent years the development of new classification and regression algorithms based on deep learning has led to a revolution in the fields of artificial intelligence, machine learning, and data analysis. The development of a theoretical foundation to guarantee the success of these algorithms constitutes one of the most active and exciting research topics in applied mathematics. This book presents the current mathematical understanding of deep learning methods from the point of view of the leading experts in the field. It serves both as a starting point for researchers and graduate students in computer science, mathematics, and statistics trying to get into the field and as an invaluable reference for future research.

Artificial Intelligence in Drug Design (Hardcover, 1st ed. 2022): Alexander Heifetz Artificial Intelligence in Drug Design (Hardcover, 1st ed. 2022)
Alexander Heifetz
R6,799 Discovery Miles 67 990 Ships in 10 - 15 working days

This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.

Advances in Machine Learning/Deep Learning-based Technologies - Selected Papers in Honour of Professor Nikolaos G. Bourbakis -... Advances in Machine Learning/Deep Learning-based Technologies - Selected Papers in Honour of Professor Nikolaos G. Bourbakis - Vol. 2 (Hardcover, 1st ed. 2022)
George A. Tsihrintzis, Maria Virvou, Lakhmi C. Jain
R5,023 Discovery Miles 50 230 Ships in 12 - 17 working days

As the 4th Industrial Revolution is restructuring human societal organization into, so-called, "Society 5.0", the field of Machine Learning (and its sub-field of Deep Learning) and related technologies is growing continuously and rapidly, developing in both itself and towards applications in many other disciplines. Researchers worldwide aim at incorporating cognitive abilities into machines, such as learning and problem solving. When machines and software systems have been enhanced with Machine Learning/Deep Learning components, they become better and more efficient at performing specific tasks. Consequently, Machine Learning/Deep Learning stands out as a research discipline due to its worldwide pace of growth in both theoretical advances and areas of application, while achieving very high rates of success and promising major impact in science, technology and society. The book at hand aims at exposing its readers to some of the most significant Advances in Machine Learning/Deep Learning-based Technologies. The book consists of an editorial note and an additional ten (10) chapters, all invited from authors who work on the corresponding chapter theme and are recognized for their significant research contributions. In more detail, the chapters in the book are organized into five parts, namely (i) Machine Learning/Deep Learning in Socializing and Entertainment, (ii) Machine Learning/Deep Learning in Education, (iii) Machine Learning/Deep Learning in Security, (iv) Machine Learning/Deep Learning in Time Series Forecasting, and (v) Machine Learning in Video Coding and Information Extraction. This research book is directed towards professors, researchers, scientists, engineers and students in Machine Learning/Deep Learning-related disciplines. It is also directed towards readers who come from other disciplines and are interested in becoming versed in some of the most recent Machine Learning/Deep Learning-based technologies. An extensive list of bibliographic references at the end of each chapter guides the readers to probe further into the application areas of interest to them.

Agricultural Cybernetics (Hardcover, 1st ed. 2021): Yanbo Huang, Qin Zhang Agricultural Cybernetics (Hardcover, 1st ed. 2021)
Yanbo Huang, Qin Zhang
R4,325 Discovery Miles 43 250 Ships in 12 - 17 working days

Agricultural systems are uniquely complex systems, given that agricultural systems are parts of natural and ecological systems. Those aspects bring in a substantial degree of uncertainty in system operation. Also, impact factors, such as weather factors, are critical in agricultural systems but these factors are uncontrollable in system management. Modern agriculture has been evolving through precision agriculture beginning in the late 1980s and biotechnological innovations in the early 2000s. Precision agriculture implements site-specific crop production management by integrating agricultural mechanization and information technology in geographic information system (GIS), global navigation satellite system (GNSS), and remote sensing. Now, precision agriculture is set to evolve into smart agriculture with advanced systematization, informatization, intelligence and automation. From precision agriculture to smart agriculture, there is a substantial amount of specific control and communication problems that have been investigated and will continue to be studied. In this book, the core ideas and methods from control problems in agricultural production systems are extracted, and a system view of agricultural production is formulated for the analysis and design of management strategies to control and optimize agricultural production systems while exploiting the intrinsic feedback information-exchanging mechanisms. On this basis, the theoretical framework of agricultural cybernetics is established to predict and control the behavior of agricultural production systems through control theory.

The Language of Creative AI - Practices, Aesthetics and Structures (Hardcover, 1st ed. 2022): Craig Vear, Fabrizio Poltronieri The Language of Creative AI - Practices, Aesthetics and Structures (Hardcover, 1st ed. 2022)
Craig Vear, Fabrizio Poltronieri
R4,680 Discovery Miles 46 800 Ships in 12 - 17 working days

Creative AI defines art and media practices that have AI embedded into the process of creation, but also encompass novel AI approaches in the realisation and experience of such work, e.g. robotic art, distributed AI artworks across locations, AI performers, artificial musicians, synthetic images generated by neural networks, AI authors and journalist bots.This book builds on the discourse of AI and creativity and extends the notion of embedded and co-operative creativity with intelligent software. It does so through a human-centred approach in which AI is empowered to make the human experience more creative. It presents ways-of-thinking and doing by the creators themselves so as to add to the ongoing discussion of AI and creativity at a time when the field needs to expand its thinking. This will avoid over-academization of this emerging field, and help counter engrained prejudice and bias. The Language of Creative AI contains technical descriptions, theoretical frameworks, philosophical concepts and practice-based case studies. It is a compendium of thinking around creative AI for technologists, human-computer interaction researchers and artists who are wishing to explore the creative potential of AI.

Machine Learning for Engineers - Using data to solve problems for physical systems (Hardcover, 1st ed. 2021): Ryan G. McClarren Machine Learning for Engineers - Using data to solve problems for physical systems (Hardcover, 1st ed. 2021)
Ryan G. McClarren
R2,400 Discovery Miles 24 000 Ships in 12 - 17 working days

All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally "analog" disciplines-mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers' ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.

Novel Financial Applications of Machine Learning and Deep Learning - Algorithms, Product Modeling, and Applications (Hardcover,... Novel Financial Applications of Machine Learning and Deep Learning - Algorithms, Product Modeling, and Applications (Hardcover, 1st ed. 2023)
Mohammad Zoynul Abedin, Petr Hajek
R4,996 Discovery Miles 49 960 Ships in 12 - 17 working days

This book presents the state-of-the-art applications of machine learning in the finance domain with a focus on financial product modeling, which aims to advance the model performance and minimize risk and uncertainty. It provides both practical and managerial implications of financial and managerial decision support systems which capture a broad range of financial data traits. It also serves as a guide for the implementation of risk-adjusted financial product pricing systems, while adding a significant supplement to the financial literacy of the investigated study. The book covers advanced machine learning techniques, such as Support Vector Machine, Neural Networks, Random Forest, K-Nearest Neighbors, Extreme Learning Machine, Deep Learning Approaches, and their application to finance datasets. It also leverages real-world financial instances to practice business product modeling and data analysis. Software code, such as MATLAB, Python and/or R including datasets within a broad range of financial domain are included for more rigorous practice. The book primarily aims at providing graduate students and researchers with a roadmap for financial data analysis. It is also intended for a broad audience, including academics, professional financial analysts, and policy-makers who are involved in forecasting, modeling, trading, risk management, economics, credit risk, and portfolio management.

Intelligent and Cloud Computing - Proceedings of ICICC 2021 (Hardcover, 1st ed. 2022): Debahuti Mishra, Rajkumar Buyya, Prasant... Intelligent and Cloud Computing - Proceedings of ICICC 2021 (Hardcover, 1st ed. 2022)
Debahuti Mishra, Rajkumar Buyya, Prasant Mohapatra, Srikanta Patnaik
R6,789 Discovery Miles 67 890 Ships in 10 - 15 working days

This book features a collection of high-quality research papers presented at the International Conference on Intelligent and Cloud Computing (ICICC 2021), held at Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India, during October 22-23, 2021. The book includes contributions on system and network design that can support existing and future applications and services. It covers topics such as cloud computing system and network design, optimization for cloud computing, networking, and applications, green cloud system design, cloud storage design and networking, storage security, cloud system models, big data storage, intra-cloud computing, mobile cloud system design, real-time resource reporting and monitoring for cloud management, machine learning, data mining for cloud computing, data-driven methodology and architecture, and networking for machine learning systems.

Proceedings of the Third International Conference on Information Management and Machine Intelligence - ICIMMI 2021 (Hardcover,... Proceedings of the Third International Conference on Information Management and Machine Intelligence - ICIMMI 2021 (Hardcover, 1st ed. 2023)
Dinesh Goyal, Anil Kumar, Vincenzo Piuri, Marcin Paprzycki
R8,861 Discovery Miles 88 610 Ships in 10 - 15 working days

This book features selected papers presented at Third International Conference on International Conference on Information Management and Machine Intelligence (ICIMMI 2021) held at Poornima Institute of Engineering & Technology, Jaipur, Rajasthan, India during 23 - 24 December 2021. It covers a range of topics, including data analytics; AI; machine and deep learning; information management, security, processing techniques and interpretation; applications of artificial intelligence in soft computing and pattern recognition; cloud-based applications for machine learning; application of IoT in power distribution systems; as well as wireless sensor networks and adaptive wireless communication.

Soil-Water, Agriculture, and Climate Change - Exploring Linkages (Hardcover, 1st ed. 2022): Swatantra Kumar Dubey, Prakash... Soil-Water, Agriculture, and Climate Change - Exploring Linkages (Hardcover, 1st ed. 2022)
Swatantra Kumar Dubey, Prakash Kumar Jha, Pankaj Kumar Gupta, Aliva Nanda, Vivek Gupta
R3,989 Discovery Miles 39 890 Ships in 12 - 17 working days

This book presents an exploration of linkages among soil-water, agriculture, and climate change with a special focus on thematic areas for assessment, mitigation, and management of natural resources under climate change conditions. This book covers advances in modelling approaches, including machine learning (ML)/ artificial intelligence (AI) applications; GIS and remote sensing; sensors; impacts of climate change on agriculture; subsurface water; contaminants; and socio-economic impacts, which are lacking in a more comprehensive manner in the previous titles. This book encompasses updated information as well as future directions for researchers working in the field of management of natural resources. The goal of this book is to provide scientific evidence to researchers and policymakers and end-to-end value chain practitioners which may help in reducing the overall adverse impacts of climate change on water resources and the related mitigation strategies. This book focuses on the knowledge, modern tools, and techniques, i.e., machine learning, artificial intelligence, etc. for soil-water, agriculture, and climate change. Further, nature-based solutions for management of natural resources with special targets on contaminants, extreme events, disturbances, etc. will be targeted. The book provides readers with the enhanced knowledge for application of engineering principles and economic and regulatory constraints to determine a soil-water, agriculture production action strategy, and select appropriate technologies to implement the strategy for a given data set at a site. It would also cover the application of laboratory, modeling, numerical methods for determination and forecasting of climate change impacts, agriculture production, pollution, soil health, etc. Overall, it provides hydrologists, environmental engineers, administrators, policy makers, consultants, and industrial experts with essential support in effective management of soils health, agricultural productions, and mitigation of extreme climatic events.

Predictive Computing and Information Security (Hardcover, 1st ed. 2017): P.K. Gupta, Vipin Tyagi, S.K. Singh Predictive Computing and Information Security (Hardcover, 1st ed. 2017)
P.K. Gupta, Vipin Tyagi, S.K. Singh
R3,899 Discovery Miles 38 990 Ships in 12 - 17 working days

This book describes various methods and recent advances in predictive computing and information security. It highlights various predictive application scenarios to discuss these breakthroughs in real-world settings. Further, it addresses state-of-art techniques and the design, development and innovative use of technologies for enhancing predictive computing and information security. Coverage also includes the frameworks for eTransportation and eHealth, security techniques, and algorithms for predictive computing and information security based on Internet-of-Things and Cloud computing. As such, the book offers a valuable resource for graduate students and researchers interested in exploring predictive modeling techniques and architectures to solve information security, privacy and protection issues in future communication.

Data Science for Economics and Finance - Methodologies and Applications (Hardcover, 1st ed. 2021): Sergio Consoli, Diego... Data Science for Economics and Finance - Methodologies and Applications (Hardcover, 1st ed. 2021)
Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana
R1,712 Discovery Miles 17 120 Ships in 12 - 17 working days

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

Deep Learning In Biology And Medicine (Hardcover): Davide Bacciu, Paulo J.G. Lisboa, Alfredo Vellido Deep Learning In Biology And Medicine (Hardcover)
Davide Bacciu, Paulo J.G. Lisboa, Alfredo Vellido
R3,266 Discovery Miles 32 660 Ships in 10 - 15 working days

Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Introduction to Statistical and Machine…
Carlos Andre Reis Pinheiro, Mike Patetta Hardcover R977 Discovery Miles 9 770
Artificial Intelligence and Machine…
Vagelis Plevris, Afaq Ahmad, … Hardcover R7,080 Discovery Miles 70 800
Artificial Intelligence Applications in…
Pantea Keikhosrokiani, Moussa Pourya Asl Hardcover R9,128 Discovery Miles 91 280
Data Analytics on Graphs
Ljubisa Stankovic, Danilo P. Mandic, … Hardcover R3,602 Discovery Miles 36 020
Cognitive Robotics and Adaptive…
Maki K. Habib Hardcover R2,926 Discovery Miles 29 260
Machine Learning - Architecture in the…
Phil Bernstein Paperback R1,267 R1,175 Discovery Miles 11 750
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, … Hardcover R7,578 Discovery Miles 75 780
Deep Learning Applications: In Computer…
Qi Xuan, Yun Xiang, … Hardcover R2,985 Discovery Miles 29 850
Get Started Programming with Python…
Manuel Mcfeely Hardcover R864 R743 Discovery Miles 7 430
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain Hardcover R9,088 Discovery Miles 90 880

 

Partners