0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (5)
  • R250 - R500 (28)
  • R500+ (2,330)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Machine Learning for Vision-Based Motion Analysis - Theory and Techniques (Hardcover, Edition.): Liang Wang, Guoying Zhao, Li... Machine Learning for Vision-Based Motion Analysis - Theory and Techniques (Hardcover, Edition.)
Liang Wang, Guoying Zhao, Li Cheng, Matti Pietikainen
R4,648 Discovery Miles 46 480 Ships in 10 - 15 working days

Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition.

Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions.

Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets.

Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.

Machine Learning Paradigms - Advances in Data Analytics (Hardcover, 1st ed. 2019): George A. Tsihrintzis, Dionisios N.... Machine Learning Paradigms - Advances in Data Analytics (Hardcover, 1st ed. 2019)
George A. Tsihrintzis, Dionisios N. Sotiropoulos, Lakhmi C. Jain
R5,389 Discovery Miles 53 890 Ships in 12 - 17 working days

This book explores some of the emerging scientific and technological areas in which the need for data analytics arises and is likely to play a significant role in the years to come. At the dawn of the 4th Industrial Revolution, data analytics is emerging as a force that drives towards dramatic changes in our daily lives, the workplace and human relationships. Synergies between physical, digital, biological and energy sciences and technologies, brought together by non-traditional data collection and analysis, drive the digital economy at all levels and offer new, previously-unavailable opportunities. The need for data analytics arises in most modern scientific disciplines, including engineering; natural-, computer- and information sciences; economics; business; commerce; environment; healthcare; and life sciences. Coming as the third volume under the general title MACHINE LEARNING PARADIGMS, the book includes an editorial note (Chapter 1) and an additional 12 chapters, and is divided into five parts: (1) Data Analytics in the Medical, Biological and Signal Sciences, (2) Data Analytics in Social Studies and Social Interactions, (3) Data Analytics in Traffic, Computer and Power Networks, (4) Data Analytics for Digital Forensics, and (5) Theoretical Advances and Tools for Data Analytics. This research book is intended for both experts/researchers in the field of data analytics, and readers working in the fields of artificial and computational intelligence as well as computer science in general who wish to learn more about the field of data analytics and its applications. An extensive list of bibliographic references at the end of each chapter guides readers to probe further into the application areas of interest to them.

Machine Learning: Theoretical Foundations and Practical Applications (Hardcover, 1st ed. 2021): Manjusha Pandey, Siddharth... Machine Learning: Theoretical Foundations and Practical Applications (Hardcover, 1st ed. 2021)
Manjusha Pandey, Siddharth Swarup Rautaray
R4,832 Discovery Miles 48 320 Ships in 10 - 15 working days

This edited book is a collection of chapters invited and presented by experts at 10th industry symposium held during 9-12 January 2020 in conjunction with 16th edition of ICDCIT. The book covers topics, like machine learning and its applications, statistical learning, neural network learning, knowledge acquisition and learning, knowledge intensive learning, machine learning and information retrieval, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms.

Learning to Classify Text Using Support Vector Machines (Hardcover, 2002 ed.): Thorsten Joachims Learning to Classify Text Using Support Vector Machines (Hardcover, 2002 ed.)
Thorsten Joachims
R3,154 Discovery Miles 31 540 Ships in 10 - 15 working days

Text Classification, or the task of automatically assigning semantic categories to natural language text, has become one of the key methods for organizing online information. Since hand-coding classification rules is costly or even impractical, most modern approaches employ machine learning techniques to automatically learn text classifiers from examples. However, none of these conventional approaches combines good prediction performance, theoretical understanding, and efficient training algorithms.

Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.

Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.

Learning To Classify Text Using Support Vector Machines isdesigned as a reference for researchers and practitioners, and is suitable as a secondary text for graduate-level students in Computer Science within Machine Learning and Language Technology.

Computational Finance with R (Hardcover, 1st ed. 2023): Rituparna Sen, Sourish Das Computational Finance with R (Hardcover, 1st ed. 2023)
Rituparna Sen, Sourish Das
R4,323 Discovery Miles 43 230 Ships in 12 - 17 working days

This book prepares students to execute the quantitative and computational needs of the finance industry. The quantitative methods are explained in detail with examples from real financial problems like option pricing, risk management, portfolio selection, etc. Codes are provided in R programming language to execute the methods. Tables and figures, often with real data, illustrate the codes. References to related work are intended to aid the reader to pursue areas of specific interest in further detail. The comprehensive background with economic, statistical, mathematical, and computational theory strengthens the understanding. The coverage is broad, and linkages between different sections are explained. The primary audience is graduate students, while it should also be accessible to advanced undergraduates. Practitioners working in the finance industry will also benefit.

Evolutionary Computation in Data Mining (Hardcover, 2005 ed.): Ashish Ghosh Evolutionary Computation in Data Mining (Hardcover, 2005 ed.)
Ashish Ghosh
R3,193 Discovery Miles 31 930 Ships in 10 - 15 working days

Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search in the space of candidate solutions (for instance, rules or another form of knowledge representation).

Strength or Accuracy: Credit Assignment in Learning Classifier Systems (Hardcover, 2004 ed.): Tim Kovacs Strength or Accuracy: Credit Assignment in Learning Classifier Systems (Hardcover, 2004 ed.)
Tim Kovacs
R4,741 Discovery Miles 47 410 Ships in 12 - 17 working days

The Distinguished Dissertations series is published on behalf of the Conference of Professors and Heads of Computing and the British Computer Society, who annually select the best British PhD dissertations in computer science for publication. The dissertations are selected on behalf of the CPHC by a panel of eight academics. Each dissertation chosen makes a noteworthy contribution to the subject and reaches a high standard of exposition, placing all results clearly in the context of computer science as a whole. In this way computer scientists with significantly different interests are able to grasp the essentials - or even find a means of entry - to an unfamiliar research topic. Machine learning promises both to create machine intelligence and to shed light on natural intelligence. A fundamental issue for either endevour is that of credit assignment, which we can pose as follows: how can we credit individual components of a complex adaptive system for their often subtle effects on the world? For example, in a game of chess, how did each move (and the reasoning behind it) contribute to the outcome? This text studies aspects of credit assignment in learning classifier systems, which combine evolutionary algorithms with reinforcement learning methods to address a range of tasks from pattern classification to stochastic control to simulation of learning in animals. Credit assignment in classifier systems is complicated by two features: 1) their components are frequently modified by evolutionary search, and 2) components tend to interact. Classifier systems are re-examined from first principles and the result is, primarily, a formalization of learning in these systems, and a body of theoryrelating types of classifier systems, learning tasks, and credit assignment pathologies. Most significantly, it is shown that both of the main approaches have difficulties with certain tasks, which the other type does not.

Learning and Generalisation - With Applications to Neural Networks (Hardcover, 2nd ed. 2002): Mathukumalli Vidyasagar Learning and Generalisation - With Applications to Neural Networks (Hardcover, 2nd ed. 2002)
Mathukumalli Vidyasagar
R5,661 Discovery Miles 56 610 Ships in 10 - 15 working days

Learning and Generalization provides a formal mathematical theory for addressing intuitive questions of the type: * How does a machine learn a new concept on the basis of examples? * How can a neural network, after sufficient training, correctly predict the outcome of a previously unseen input? * How much training is required to achieve a specified level of accuracy in the prediction? * How can one identify the dynamical behaviour of a nonlinear control system by observing its input-output behaviour over a finite interval of time? The first edition, A Theory of Learning and Generalization, was the first book to treat the problem of machine learning in conjunction with the theory of empirical process, the latter being a well-established branch of probability theory. The treatment of both topics side-by-side leads to new insights, as well as new results in both topics. The second edition extends and improves upon this material, covering new areas including: * Support vector machines (SVM's) * Fat-shattering dimensions and applications to neural network learning * Learning with dependent samples generated by a beta-mixing process * Connections between system identification and learning theory * Probabilistic solution of 'intractable problems' in robust control and matrix theory using randomized algorithms It also contains solutions to some of the open problems posed in the first edition, while adding new open problems. This book is essential reading for control and system theorists, neural network researchers, theoretical computer scientists and probabilists The Communications and Control Engineering series reflects the major technological advances which have a great impact in the fields of communication and control. It reports on the research in industrial and academic institutions around the world to exploit the new possibilities which are becoming available

The Nature of Statistical Learning Theory (Hardcover, 2nd ed. 2000): Vladimir Vapnik The Nature of Statistical Learning Theory (Hardcover, 2nd ed. 2000)
Vladimir Vapnik
R6,494 Discovery Miles 64 940 Ships in 12 - 17 working days

The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: * the setting of learning problems based on the model of minimizing the risk functional from empirical data * a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency * non-asymptotic bounds for the risk achieved using the empirical risk minimization principle * principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds * the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation * a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader AT&T Labs-Research and Professor of London University. He is one of the founders of statistical learning theory, and the author of seven books published in English, Russian, German, and Chinese.

Evolutionary Algorithms and Agricultural Systems (Hardcover, 2002 ed.): David G. Mayer Evolutionary Algorithms and Agricultural Systems (Hardcover, 2002 ed.)
David G. Mayer
R5,932 Discovery Miles 59 320 Ships in 10 - 15 working days

Evolutionary Algorithms and Agricultural Systems deals with the practical application of evolutionary algorithms to the study and management of agricultural systems. The rationale of systems research methodology is introduced, and examples listed of real-world applications. It is the integration of these agricultural systems models with optimization techniques, primarily genetic algorithms, which forms the focus of this book. The advantages are outlined, with examples of agricultural models ranging from national and industry-wide studies down to the within-farm scale. The potential problems of this approach are also discussed, along with practical methods of resolving these problems. Agricultural applications using alternate optimization techniques (gradient and direct-search methods, simulated annealing and quenching, and the tabu search strategy) are also listed and discussed. The particular problems and methodologies of these algorithms, including advantageous features that may benefit a hybrid approach or be usefully incorporated into evolutionary algorithms, are outlined. From consideration of this and the published examples, it is concluded that evolutionary algorithms are the superior method for the practical optimization of models of agricultural and natural systems. General recommendations on robust options and parameter settings for evolutionary algorithms are given for use in future studies. Evolutionary Algorithms and Agricultural Systems will prove useful to practitioners and researchers applying these methods to the optimization of agricultural or natural systems, and would also be suited as a text for systems management, applied modeling, or operations research.

Exploration of Visual Data (Hardcover, 2003 ed.): Sean Xiang Zhou, Yong Rui, Thomas S. Huang Exploration of Visual Data (Hardcover, 2003 ed.)
Sean Xiang Zhou, Yong Rui, Thomas S. Huang
R3,144 Discovery Miles 31 440 Ships in 10 - 15 working days

Exploration of Visual Data presents latest research efforts in the area of content-based exploration of image and video data. The main objective is to bridge the semantic gap between high-level concepts in the human mind and low-level features extractable by the machines.

The two key issues emphasized are "content-awareness" and "user-in-the-loop." The authors provide a comprehensive review on algorithms for visual feature extraction based on color, texture, shape, and structure, and techniques for incorporating such information to aid browsing, exploration, search, and streaming of image and video data. They also discuss issues related to the mixed use of textual and low-level visual features to facilitate more effective access of multimedia data.

To bridge the semantic gap, significant recent research efforts have also been put on learning during user interactions, which is also known as "relevance feedback." The difficulty and challenge also come from the personalized information need of each user and a small amount of feedbacks the machine could obtain through real-time user interaction. The authors present and discuss several recently proposed classification and learning techniques that are specifically designed for this problem, with kernel- and boosting-based approaches for nonlinear extensions.

Exploration of Visual Data provides state-of-the-art materials on the topics of content-based description of visual data, content-based low-bitrate video streaming, and latest asymmetric and nonlinear relevance feedback algorithms, which to date are unpublished.

Exploration of Visual Data will be of interest to researchers, practitioners, and graduate-level students in theareas of multimedia information systems, multimedia databases, computer vision, machine learning.

Extreme Learning Machines 2013: Algorithms and Applications (Hardcover, 2014): Fuchen Sun, Kar-Ann Toh, Manuel Grana Romay,... Extreme Learning Machines 2013: Algorithms and Applications (Hardcover, 2014)
Fuchen Sun, Kar-Ann Toh, Manuel Grana Romay, Kezhi Mao
R3,894 R3,605 Discovery Miles 36 050 Save R289 (7%) Ships in 12 - 17 working days

In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability.

This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discussions of learning without iterative tuning."

This book covers algorithms and applications of ELM. It gives readers a glance of the newest developments of ELM."

The Informational Complexity of Learning - Perspectives on Neural Networks and Generative Grammar (Hardcover, 1998 ed.): Partha... The Informational Complexity of Learning - Perspectives on Neural Networks and Generative Grammar (Hardcover, 1998 ed.)
Partha Niyogi
R3,171 Discovery Miles 31 710 Ships in 10 - 15 working days

Among other topics, The Informational Complexity of Learning: Perspectives on Neural Networks and Generative Grammar brings together two important but very different learning problems within the same analytical framework. The first concerns the problem of learning functional mappings using neural networks, followed by learning natural language grammars in the principles and parameters tradition of Chomsky. These two learning problems are seemingly very different. Neural networks are real-valued, infinite-dimensional, continuous mappings. On the other hand, grammars are boolean-valued, finite-dimensional, discrete (symbolic) mappings. Furthermore the research communities that work in the two areas almost never overlap. The book's objective is to bridge this gap. It uses the formal techniques developed in statistical learning theory and theoretical computer science over the last decade to analyze both kinds of learning problems. By asking the same question - how much information does it take to learn? - of both problems, it highlights their similarities and differences. Specific results include model selection in neural networks, active learning, language learning and evolutionary models of language change. The Informational Complexity of Learning: Perspectives on Neural Networks and Generative Grammar is a very interdisciplinary work. Anyone interested in the interaction of computer science and cognitive science should enjoy the book. Researchers in artificial intelligence, neural networks, linguistics, theoretical computer science, and statistics will find it particularly relevant.

Black Box Optimization, Machine Learning, and No-Free Lunch Theorems (Hardcover, 1st ed. 2021): Panos M. Pardalos, Varvara... Black Box Optimization, Machine Learning, and No-Free Lunch Theorems (Hardcover, 1st ed. 2021)
Panos M. Pardalos, Varvara Rasskazova, Michael N Vrahatis
R3,861 Discovery Miles 38 610 Ships in 10 - 15 working days

This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.

Let's Ask AI - A Non-Technical Modern Approach to AI and Philosophy (Hardcover): Ingrid Seabra, Pedro Seabra, Angela Chan Let's Ask AI - A Non-Technical Modern Approach to AI and Philosophy (Hardcover)
Ingrid Seabra, Pedro Seabra, Angela Chan
R763 Discovery Miles 7 630 Ships in 12 - 17 working days
Advances in Computational Intelligence Techniques (Hardcover, 1st ed. 2020): Shruti Jain, Meenakshi Sood, Sudip Paul Advances in Computational Intelligence Techniques (Hardcover, 1st ed. 2020)
Shruti Jain, Meenakshi Sood, Sudip Paul
R5,376 Discovery Miles 53 760 Ships in 12 - 17 working days

This book highlights recent advances in computational intelligence for signal processing, computing, imaging, artificial intelligence, and their applications. It offers support for researchers involved in designing decision support systems to promote the societal acceptance of ambient intelligence, and presents the latest research on diverse topics in intelligence technologies with the goal of advancing knowledge and applications in this rapidly evolving field. As such, it offers a valuable resource for researchers, developers and educators whose work involves recent advances and emerging technologies in computational intelligence.

Machine Learning Paradigms - Applications in Recommender Systems (Hardcover, 2015 ed.): Aristomenis S Lampropoulos, George A.... Machine Learning Paradigms - Applications in Recommender Systems (Hardcover, 2015 ed.)
Aristomenis S Lampropoulos, George A. Tsihrintzis
R3,502 Discovery Miles 35 020 Ships in 12 - 17 working days

This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes. Recommender systems built on the assumption of availability of both positive and negative examples do not perform well when negative examples are rare. It is exactly this problem that the authors address in the monograph at hand. Specifically, the books approach is based on one-class classification methodologies that have been appearing in recent machine learning research. The blending of recommender systems and one-class classification provides a new very fertile field for research, innovation and development with potential applications in "big data" as well as "sparse data" problems. The book will be useful to researchers, practitioners and graduate students dealing with problems of extensive and complex data. It is intended for both the expert/researcher in the fields of Pattern Recognition, Machine Learning and Recommender Systems, as well as for the general reader in the fields of Applied and Computer Science who wishes to learn more about the emerging discipline of Recommender Systems and their applications. Finally, the book provides an extended list of bibliographic references which covers the relevant literature completely.

Real-Time Intelligence for Heterogeneous Networks - Applications, Challenges, and Scenarios in IoT HetNets (Hardcover, 1st ed.... Real-Time Intelligence for Heterogeneous Networks - Applications, Challenges, and Scenarios in IoT HetNets (Hardcover, 1st ed. 2021)
Fadi Al-Turjman
R4,833 Discovery Miles 48 330 Ships in 10 - 15 working days

This book discusses several exciting research topics and applications in the intelligent Heterogenous Networks (Het-Net) and Internet of Things (IoT) era. We are resolving significant issues towards realizing the future vision of the Artificial Intelligence (AI) in IoT-enabled spaces. Such AI-powered IoT solutions will be employed in satisfying critical conditions towards further advances in our daily smart life. This book overviews the associated issues and proposes the most up to date alternatives. The objective is to pave the way for AI-powered IoT-enabled spaces in the next generation Het-Net technologies and open the door for further innovations. The book presents the latest advances and research into heterogeneous networks in critical IoT applications. It discusses the most important problems, challenges, and issues that arise when designing real-time intelligent heterogeneous networks for diverse scenarios.

Identification, Adaptation, Learning - The Science of Learning Models from Data (Hardcover, 1996 ed.): Sergio Bittanti, Giorgio... Identification, Adaptation, Learning - The Science of Learning Models from Data (Hardcover, 1996 ed.)
Sergio Bittanti, Giorgio Picci
R6,242 Discovery Miles 62 420 Ships in 10 - 15 working days

This book collects the lectures given at the NATO Advanced Study Institute From Identijication to Learning held in Villa Olmo, Como, Italy, from August 22 to September 2, 1994. The school was devoted to the themes of Identijication, Adaptation and Learning, as they are currently understood in the Information and Contral engineering community, their development in the last few decades, their inter connections and their applications. These titles describe challenging, exciting and rapidly growing research areas which are of interest both to contral and communication engineers and to statisticians and computer scientists. In accordance with the general goals of the Institute, and notwithstanding the rat her advanced level of the topics discussed, the presentations have been generally kept at a fairly tutorial level. For this reason this book should be valuable to a variety of rearchers and to graduate students interested in the general area of Control, Signals and Information Pracessing. As the goal of the school was to explore a common methodologicalline of reading the issues, the flavor is quite interdisciplinary. We regard this as an original and valuable feature of this book."

Ensemble Machine Learning - Methods and Applications (Hardcover, 2012): Cha Zhang, Yunqian Ma Ensemble Machine Learning - Methods and Applications (Hardcover, 2012)
Cha Zhang, Yunqian Ma
R6,689 Discovery Miles 66 890 Ships in 10 - 15 working days

It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed "ensemble learning" by researchers in computational intelligence and machine learning, it is known to improve a decision system's robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as "boosting" and "random forest" facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics.

Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.

"

Learning Search Control Knowledge - An Explanation-Based Approach (Hardcover, 1988 ed.): Steven Minton Learning Search Control Knowledge - An Explanation-Based Approach (Hardcover, 1988 ed.)
Steven Minton
R3,154 Discovery Miles 31 540 Ships in 10 - 15 working days

The ability to learn from experience is a fundamental requirement for intelligence. One of the most basic characteristics of human intelligence is that people can learn from problem solving, so that they become more adept at solving problems in a given domain as they gain experience. This book investigates how computers may be programmed so that they too can learn from experience. Specifically, the aim is to take a very general, but inefficient, problem solving system and train it on a set of problems from a given domain, so that it can transform itself into a specialized, efficient problem solver for that domain. on a knowledge-intensive Recently there has been considerable progress made learning approach, explanation-based learning (EBL), that brings us closer to this possibility. As demonstrated in this book, EBL can be used to analyze a problem solving episode in order to acquire control knowledge. Control knowledge guides the problem solver's search by indicating the best alternatives to pursue at each choice point. An EBL system can produce domain specific control knowledge by explaining why the choices made during a problem solving episode were, or were not, appropriate.

Extending the Scalability of Linkage Learning Genetic Algorithms - Theory & Practice (Hardcover, 2006 ed.): Ying-Ping Chen Extending the Scalability of Linkage Learning Genetic Algorithms - Theory & Practice (Hardcover, 2006 ed.)
Ying-Ping Chen
R3,102 Discovery Miles 31 020 Ships in 10 - 15 working days

Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, most GAs employed in practice nowadays are unable to learn genetic linkage and suffer from the linkage problem. The linkage learning genetic algorithm (LLGA) was proposed to tackle the linkage problem with several specially designed mechanisms. While the LLGA performs much better on badly scaled problems than simple GAs, it does not work well on uniformly scaled problems as other competent GAs. Therefore, we need to understand why it is so and need to know how to design a better LLGA or whether there are certain limits of such a linkage learning process. This book aims to gain better understanding of the LLGA in theory and to improve the LLGA's performance in practice. It starts with a survey of the existing genetic linkage learning techniques and describes the steps and approaches taken to tackle the research topics, including using promoters, developing the convergence time model, and adopting subchromosomes.

An Elementary Introduction to Statistical Learning  Theory (Hardcover): S. R Kulkarni An Elementary Introduction to Statistical Learning Theory (Hardcover)
S. R Kulkarni
R3,211 Discovery Miles 32 110 Ships in 10 - 15 working days

A thought-provoking look at statistical learning theory and its role in understanding human learning and inductive reasoning

A joint endeavor from leading researchers in the fields of philosophy and electrical engineering, "An Elementary Introduction to Statistical Learning Theory" is a comprehensive and accessible primer on the rapidly evolving fields of statistical pattern recognition and statistical learning theory. Explaining these areas at a level and in a way that is not often found in other books on the topic, the authors present the basic theory behind contemporary machine learning and uniquely utilize its foundations as a framework for philosophical thinking about inductive inference.

Promoting the fundamental goal of statistical learning, knowing what is achievable and what is not, this book demonstrates the value of a systematic methodology when used along with the needed techniques for evaluating the performance of a learning system. First, an introduction to machine learning is presented that includes brief discussions of applications such as image recognition, speech recognition, medical diagnostics, and statistical arbitrage. To enhance accessibility, two chapters on relevant aspects of probability theory are provided. Subsequent chapters feature coverage of topics such as the pattern recognition problem, optimal Bayes decision rule, the nearest neighbor rule, kernel rules, neural networks, support vector machines, and boosting.

Appendices throughout the book explore the relationship between the discussed material and related topics from mathematics, philosophy, psychology, and statistics, drawing insightful connections between problems in these areas and statistical learning theory. All chapters conclude with a summary section, a set of practice questions, and a reference sections that supplies historical notes and additional resources for further study.

"An Elementary Introduction to Statistical Learning Theory" is an excellent book for courses on statistical learning theory, pattern recognition, and machine learning at the upper-undergraduate and graduate levels. It also serves as an introductory reference for researchers and practitioners in the fields of engineering, computer science, philosophy, and cognitive science that would like to further their knowledge of the topic.

Machine Learning Control by Symbolic Regression (Hardcover, 1st ed. 2021): Askhat Diveev, Elizaveta Shmalko Machine Learning Control by Symbolic Regression (Hardcover, 1st ed. 2021)
Askhat Diveev, Elizaveta Shmalko
R3,790 Discovery Miles 37 900 Ships in 10 - 15 working days

This book provides comprehensive coverage on a new direction in computational mathematics research: automatic search for formulas. Formulas must be sought in all areas of science and life: these are the laws of the universe, the macro and micro world, fundamental physics, engineering, weather and natural disasters forecasting; the search for new laws in economics, politics, sociology. Accumulating many years of experience in the development and application of numerical methods of symbolic regression to solving control problems, the authors offer new possibilities not only in the field of control automation, but also in the design of completely different optimal structures in many fields. For specialists in the field of control, Machine Learning Control by Symbolic Regression opens up a new promising direction of research and acquaints scientists with the methods of automatic construction of control systems.For specialists in the field of machine learning, the book opens up a new, much broader direction than neural networks: methods of symbolic regression. This book makes it easy to master this new area in machine learning and apply this approach everywhere neural networks are used. For mathematicians, the book opens up a new approach to the construction of numerical methods for obtaining analytical solutions to unsolvable problems; for example, numerical analytical solutions of algebraic equations, differential equations, non-trivial integrals, etc. For specialists in the field of artificial intelligence, the book offers a machine way to solve problems, framed in the form of analytical relationships.

AI-Enabled Threat Detection and Security Analysis for Industrial IoT (Hardcover, 1st ed. 2021): Hadis Karimipour, Farnaz... AI-Enabled Threat Detection and Security Analysis for Industrial IoT (Hardcover, 1st ed. 2021)
Hadis Karimipour, Farnaz Derakhshan
R4,674 Discovery Miles 46 740 Ships in 12 - 17 working days

This contributed volume provides the state-of-the-art development on security and privacy for cyber-physical systems (CPS) and industrial Internet of Things (IIoT). More specifically, this book discusses the security challenges in CPS and IIoT systems as well as how Artificial Intelligence (AI) and Machine Learning (ML) can be used to address these challenges. Furthermore, this book proposes various defence strategies, including intelligent cyber-attack and anomaly detection algorithms for different IIoT applications. Each chapter corresponds to an important snapshot including an overview of the opportunities and challenges of realizing the AI in IIoT environments, issues related to data security, privacy and application of blockchain technology in the IIoT environment. This book also examines more advanced and specific topics in AI-based solutions developed for efficient anomaly detection in IIoT environments. Different AI/ML techniques including deep representation learning, Snapshot Ensemble Deep Neural Network (SEDNN), federated learning and multi-stage learning are discussed and analysed as well. Researchers and professionals working in computer security with an emphasis on the scientific foundations and engineering techniques for securing IIoT systems and their underlying computing and communicating systems will find this book useful as a reference. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, cyber security, and information systems. It also applies to advanced-level students studying electrical engineering and system engineering, who would benefit from the case studies.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Deep Learning Applications: In Computer…
Qi Xuan, Yun Xiang, … Hardcover R2,985 Discovery Miles 29 850
Machine Learning for Societal…
Vishnu S. Pendyala Hardcover R7,620 Discovery Miles 76 200
Cognitive Robotics and Adaptive…
Maki K. Habib Hardcover R2,926 Discovery Miles 29 260
Artificial Intelligence and You - What…
Peter J. Scott Hardcover R889 R779 Discovery Miles 7 790
Basic Python Commands - Learn the Basic…
Manuel Mcfeely Hardcover R891 R764 Discovery Miles 7 640
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, … Hardcover R7,578 Discovery Miles 75 780
Machine Learning and Artificial…
Chandrasekar Vuppalapati Hardcover R4,716 Discovery Miles 47 160
Deep Learning Techniques and…
J. Joshua Thomas, Pinar Karagoz, … Hardcover R7,702 Discovery Miles 77 020
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain Hardcover R9,088 Discovery Miles 90 880
Get Started Programming with Python…
Manuel Mcfeely Hardcover R864 R743 Discovery Miles 7 430

 

Partners