0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Buy Now

Test Data Engineering - Latent Rank Analysis, Biclustering, and Bayesian Network (Hardcover, 1st ed. 2022) Loot Price: R3,706
Discovery Miles 37 060
Test Data Engineering - Latent Rank Analysis, Biclustering, and Bayesian Network (Hardcover, 1st ed. 2022): Kojiro Shojima

Test Data Engineering - Latent Rank Analysis, Biclustering, and Bayesian Network (Hardcover, 1st ed. 2022)

Kojiro Shojima

Series: Behaviormetrics: Quantitative Approaches to Human Behavior, 13

 (sign in to rate)
Loot Price R3,706 Discovery Miles 37 060 | Repayment Terms: R347 pm x 12*

Bookmark and Share

Expected to ship within 10 - 15 working days

This is the first technical book that considers tests as public tools and examines how to engineer and process test data, extract the structure within the data to be visualized, and thereby make test results useful for students, teachers, and the society. The author does not differentiate test data analysis from data engineering and information visualization. This monograph introduces the following methods of engineering or processing test data, including the latest machine learning techniques: classical test theory (CTT), item response theory (IRT), latent class analysis (LCA), latent rank analysis (LRA), biclustering (co-clustering), and Bayesian network model (BNM). CTT and IRT are methods for analyzing test data and evaluating students' abilities on a continuous scale. LCA and LRA assess examinees by classifying them into nominal and ordinal clusters, respectively, where the adequate number of clusters is estimated from the data. Biclustering classifies examinees into groups (latent clusters) while classifying items into fields (factors). Particularly, the infinite relational model discussed in this book is a biclustering method feasible under the condition that neither the number of groups nor the number of fields is known beforehand. Additionally, the local dependence LRA, local dependence biclustering, and bicluster network model are methods that search and visualize inter-item (or inter-field) network structure using the mechanism of BNM. As this book offers a new perspective on test data analysis methods, it is certain to widen readers' perspective on test data analysis.

General

Imprint: Springer Verlag, Singapore
Country of origin: Singapore
Series: Behaviormetrics: Quantitative Approaches to Human Behavior, 13
Release date: August 2022
First published: 2022
Authors: Kojiro Shojima
Dimensions: 235 x 155mm (L x W)
Format: Hardcover
Pages: 579
Edition: 1st ed. 2022
ISBN-13: 978-981-16-9985-6
Categories: Books > Social sciences > Politics & government > Public administration
Books > Science & Mathematics > Mathematics > Probability & statistics
Books > Social sciences > Sociology, social studies > Social research & statistics > General
Books > Social sciences > Psychology > Psychological methodology > Psychological testing & measurement
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Promotions
LSN: 981-16-9985-2
Barcode: 9789811699856

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka Hardcover R3,950 Discovery Miles 39 500
Machine Learning and Data Mining
I Kononenko, M Kukar Paperback R1,903 Discovery Miles 19 030
Autonomous Mobile Robots - Planning…
Rahul Kala Paperback R4,294 Discovery Miles 42 940
Digital Technologies for Agriculture
Narendra Rathore Singh Hardcover R6,512 Discovery Miles 65 120
Basic Python Commands - Learn the Basic…
Manuel Mcfeely Hardcover R780 R679 Discovery Miles 6 790
Machine Learning and Pattern Recognition…
Jahan B. Ghasemi Paperback R3,925 Discovery Miles 39 250
Statistical Modeling in Machine Learning…
Tilottama Goswami, G. R. Sinha Paperback R3,925 Discovery Miles 39 250
Adversarial Robustness for Machine…
Pin-Yu Chen, Cho-Jui Hsieh Paperback R2,204 Discovery Miles 22 040
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, … Paperback R3,380 Discovery Miles 33 800
Deep Learning for Sustainable…
Ramesh Poonia, Vijander Singh, … Paperback R2,957 Discovery Miles 29 570
Machine Learning for Biometrics…
Partha Pratim Sarangi, Madhumita Panda, … Paperback R2,570 Discovery Miles 25 700
Advanced Data Mining Tools and Methods…
Sourav De, Sandip Dey, … Paperback R2,944 Discovery Miles 29 440

See more

Partners