0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (2)
  • R250 - R500 (19)
  • R500+ (2,248)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning

Data Mining and Machine Learning in High-Performance Sport - Performance Analysis of On-field and Video Assistant Referees in... Data Mining and Machine Learning in High-Performance Sport - Performance Analysis of On-field and Video Assistant Referees in European Soccer Leagues (Paperback, 1st ed. 2022)
Rabiu Muazu Musa, Anwar P.P. Abdul Majeed, Mohamad Razali Abdullah, Garry Kuan, Mohd Azraai Mohd Razman
R1,348 Discovery Miles 13 480 Ships in 18 - 22 working days

This book explores the application of data mining and machine learning techniques in studying the activity pattern, decision-making skills, misconducts, and actions resulting in the intervention of VAR in European soccer leagues referees. The game of soccer at the elite level is characterised by intense competitions, a high level of intensity, technical, and tactical skills coupled with a long duration of play. Referees are required to officiate the game and deliver correct and indisputable decisions throughout the duration of play. The increase in the spatial and temporal task demands of the game necessitates that the referees must respond and cope with the physiological and psychological loads inherent in the game. The referees are also required to deliver an accurate decision and uphold the rules and regulations of the game during a match. These demands and attributes make the work of referees highly complex. The increasing pace and complexity of the game resulted in the introduction of the Video Assistant Referee (VAR) to assist and improve the decision-making of on-field referees. Despite the integration of VAR into the current refereeing system, the performances of the referees are yet to be error-free. Machine learning coupled with data mining techniques has shown to be vital in providing insights from a large dataset which could be used to draw important inferences that can aid decision-making for diagnostics purposes and overall performance improvement. A total of 6232 matches from 5 consecutive seasons officiated across the English Premier League, Spanish LaLiga, Italian Serie A as well as the German Bundesliga was studied. It is envisioned that the findings in this book could be useful in recognising the activity pattern of top-class referees, that is non-trivial for the stakeholders in devising strategies to further enhance the performances of referees as well as empower talent identification experts with pertinent information for mapping out future high-performance referees.

A Hands-On Introduction to Machine Learning (Hardcover): Chirag Shah A Hands-On Introduction to Machine Learning (Hardcover)
Chirag Shah
R1,531 Discovery Miles 15 310 Ships in 10 - 15 working days

Packed with real-world examples, industry insights and practical activities, this textbook is designed to teach machine learning in a way that is easy to understand and apply. It assumes only a basic knowledge of technology, making it an ideal resource for students and professionals, including those who are new to computer science. All the necessary topics are covered, including supervised and unsupervised learning, neural networks, reinforcement learning, cloud-based services, and the ethical issues still posing problems within the industry. While Python is used as the primary language, many exercises will also have the solutions provided in R for greater versatility. A suite of online resources is available to support teaching across a range of different courses, including example syllabi, a solutions manual, and lecture slides. Datasets and code are also available online for students, giving them everything they need to practice the examples and problems in the book.

Millimeter-Wave Networks - Beamforming Design and Performance Analysis (Paperback, 1st ed. 2021): Peng Yang, Wen Wu, Ning... Millimeter-Wave Networks - Beamforming Design and Performance Analysis (Paperback, 1st ed. 2021)
Peng Yang, Wen Wu, Ning Zhang, Xuemin Shen
R3,978 Discovery Miles 39 780 Ships in 18 - 22 working days

This book provides a comprehensive review and in-depth study on efficient beamforming design and rigorous performance analysis in mmWave networks, covering beam alignment, beamforming training and beamforming-aided caching. Due to significant beam alignment latency between the transmitter and the receiver in existing mmWave systems, this book proposes a machine learning based beam alignment algorithm for mmWave networks to determine the optimal beam pair with a low latency. Then, to analyze and enhance the performance of beamforming training (BFT) protocol in 802.11ad mmWave networks, an analytical model is presented to evaluate the performance of BFT protocol and an enhancement scheme is proposed to improve its performance in high user density scenarios. Furthermore, it investigates the beamforming-aided caching problem in mmWave networks, and proposes a device-to-device assisted cooperative edge caching to alleviate backhaul congestion and reduce content retrieval delay. This book concludes with future research directions in the related fields of study. The presented beamforming designs and the corresponding research results covered in this book, provides valuable insights for practical mmWave network deployment and motivate new ideas for future mmWave networking. This book targets researchers working in the fields of mmWave networks, beamforming design, and resource management as well as graduate students studying the areas of electrical engineering, computing engineering and computer science. Professionals in industry who work in this field will find this book useful as a reference.

Periodic Pattern Mining - Theory, Algorithms, and Applications (Paperback, 1st ed. 2021): R. Uday Kiran, Philippe... Periodic Pattern Mining - Theory, Algorithms, and Applications (Paperback, 1st ed. 2021)
R. Uday Kiran, Philippe Fournier-Viger, Jose M. Luna, Jerry Chun-Wei Lin, Anirban Mondal
R4,005 Discovery Miles 40 050 Ships in 18 - 22 working days

This book provides an introduction to the field of periodic pattern mining, reviews state-of-the-art techniques, discusses recent advances, and reviews open-source software. Periodic pattern mining is a popular and emerging research area in the field of data mining. It involves discovering all regularly occurring patterns in temporal databases. One of the major applications of periodic pattern mining is the analysis of customer transaction databases to discover sets of items that have been regularly purchased by customers. Discovering such patterns has several implications for understanding the behavior of customers. Since the first work on periodic pattern mining, numerous studies have been published and great advances have been made in this field. The book consists of three main parts: introduction, algorithms, and applications. The first chapter is an introduction to pattern mining and periodic pattern mining. The concepts of periodicity, periodic support, search space exploration techniques, and pruning strategies are discussed. The main types of algorithms are also presented such as periodic-frequent pattern growth, partial periodic pattern-growth, and periodic high-utility itemset mining algorithm. Challenges and research opportunities are reviewed. The chapters that follow present state-of-the-art techniques for discovering periodic patterns in (1) transactional databases, (2) temporal databases, (3) quantitative temporal databases, and (4) big data. Then, the theory on concise representations of periodic patterns is presented, as well as hiding sensitive information using privacy-preserving data mining techniques. The book concludes with several applications of periodic pattern mining, including applications in air pollution data analytics, accident data analytics, and traffic congestion analytics.

Soft Computing in Interdisciplinary Sciences (Paperback, 1st ed. 2022): S. Chakraverty Soft Computing in Interdisciplinary Sciences (Paperback, 1st ed. 2022)
S. Chakraverty
R4,685 Discovery Miles 46 850 Ships in 18 - 22 working days

This book meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of soft computing on the other. Soft computing is the recent development about the computing methods which include fuzzy set theory/logic, evolutionary computation (EC), probabilistic reasoning, artificial neural networks, machine learning, expert systems, etc. Soft computing refers to a partnership of computational techniques in computer science, artificial intelligence, machine learning, and some other engineering disciplines, which attempt to study, model, and analyze complex problems from different interdisciplinary problems. This, as opposed to traditional computing, deals with approximate models and gives solutions to complex real-life problems. Unlike hard computing, soft computing is tolerant of imprecision, uncertainty, partial truth, and approximations. Interdisciplinary sciences include various challenging problems of science and engineering. Recent developments in soft computing are the bridge to handle different interdisciplinary science and engineering problems. In recent years, the correspondingly increased dialog between these disciplines has led to this new book. This is done, firstly, by encouraging the ways that soft computing may be applied in traditional areas, as well as point towards new and innovative areas of applications and secondly, by encouraging other scientific disciplines to engage in a dialog with the above computation algorithms outlining their problems to both access new methods as well as to suggest innovative developments within itself.

Analysis of Images, Social Networks and Texts - 10th International Conference, AIST 2021, Tbilisi, Georgia, December 16-18,... Analysis of Images, Social Networks and Texts - 10th International Conference, AIST 2021, Tbilisi, Georgia, December 16-18, 2021, Revised Selected Papers (Paperback, 1st ed. 2022)
Evgeny Burnaev, Dmitry I. Ignatov, Sergei Ivanov, Michael Khachay, Olessia Koltsova, …
R2,108 Discovery Miles 21 080 Ships in 18 - 22 working days

This book constitutes revised selected papers from the thoroughly refereed proceedings of the 10th International Conference on Analysis of Images, Social Networks and Texts, AIST 2021, held in Tbilisi, Georgia, during December 16-18, 2021. The 20 full papers and 5 short papers included in this book were carefully reviewed and selected from 118 submissions. They were organized in topical sections as follows: Invited papers; natural language processing; computer vision; data analysis and machine learning; social network analysis; and theoretical machine learning and optimization.

Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XV (Paperback,... Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XV (Paperback, 1st ed. 2022)
Shai Avidan, Gabriel Brostow, Moustapha Cisse, Giovanni Maria Farinella, Tal Hassner
R3,015 Discovery Miles 30 150 Ships in 18 - 22 working days

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23-27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Federated Learning for Wireless Networks (Paperback, 1st ed. 2021): Choong Seon Hong, Latif U. Khan, Mingzhe Chen, Dawei Chen,... Federated Learning for Wireless Networks (Paperback, 1st ed. 2021)
Choong Seon Hong, Latif U. Khan, Mingzhe Chen, Dawei Chen, Walid Saad, …
R4,231 Discovery Miles 42 310 Ships in 18 - 22 working days

Recently machine learning schemes have attained significant attention as key enablers for next-generation wireless systems. Currently, wireless systems are mostly using machine learning schemes that are based on centralizing the training and inference processes by migrating the end-devices data to a third party centralized location. However, these schemes lead to end-devices privacy leakage. To address these issues, one can use a distributed machine learning at network edge. In this context, federated learning (FL) is one of most important distributed learning algorithm, allowing devices to train a shared machine learning model while keeping data locally. However, applying FL in wireless networks and optimizing the performance involves a range of research topics. For example, in FL, training machine learning models require communication between wireless devices and edge servers via wireless links. Therefore, wireless impairments such as uncertainties among wireless channel states, interference, and noise significantly affect the performance of FL. On the other hand, federated-reinforcement learning leverages distributed computation power and data to solve complex optimization problems that arise in various use cases, such as interference alignment, resource management, clustering, and network control. Traditionally, FL makes the assumption that edge devices will unconditionally participate in the tasks when invited, which is not practical in reality due to the cost of model training. As such, building incentive mechanisms is indispensable for FL networks. This book provides a comprehensive overview of FL for wireless networks. It is divided into three main parts: The first part briefly discusses the fundamentals of FL for wireless networks, while the second part comprehensively examines the design and analysis of wireless FL, covering resource optimization, incentive mechanism, security and privacy. It also presents several solutions based on optimization theory, graph theory, and game theory to optimize the performance of federated learning in wireless networks. Lastly, the third part describes several applications of FL in wireless networks.

Machine Learning Control by Symbolic Regression (Paperback, 1st ed. 2021): Askhat Diveev, Elizaveta Shmalko Machine Learning Control by Symbolic Regression (Paperback, 1st ed. 2021)
Askhat Diveev, Elizaveta Shmalko
R3,298 Discovery Miles 32 980 Ships in 18 - 22 working days

This book provides comprehensive coverage on a new direction in computational mathematics research: automatic search for formulas. Formulas must be sought in all areas of science and life: these are the laws of the universe, the macro and micro world, fundamental physics, engineering, weather and natural disasters forecasting; the search for new laws in economics, politics, sociology. Accumulating many years of experience in the development and application of numerical methods of symbolic regression to solving control problems, the authors offer new possibilities not only in the field of control automation, but also in the design of completely different optimal structures in many fields. For specialists in the field of control, Machine Learning Control by Symbolic Regression opens up a new promising direction of research and acquaints scientists with the methods of automatic construction of control systems.For specialists in the field of machine learning, the book opens up a new, much broader direction than neural networks: methods of symbolic regression. This book makes it easy to master this new area in machine learning and apply this approach everywhere neural networks are used. For mathematicians, the book opens up a new approach to the construction of numerical methods for obtaining analytical solutions to unsolvable problems; for example, numerical analytical solutions of algebraic equations, differential equations, non-trivial integrals, etc. For specialists in the field of artificial intelligence, the book offers a machine way to solve problems, framed in the form of analytical relationships.

Higgs Boson Decays into a Pair of Bottom Quarks - Observation with the ATLAS Detector and Machine Learning Applications... Higgs Boson Decays into a Pair of Bottom Quarks - Observation with the ATLAS Detector and Machine Learning Applications (Paperback, 1st ed. 2021)
Cecilia Tosciri
R4,207 Discovery Miles 42 070 Ships in 18 - 22 working days

The discovery in 2012 of the Higgs boson at the Large Hadron Collider (LHC) represents a milestone for the Standard Model (SM) of particle physics. Most of the SM Higgs production and decay rates have been measured at the LHC with increased precision. However, despite its experimental success, the SM is known to be only an effective manifestation of a more fundamental description of nature. The scientific research at the LHC is strongly focused on extending the SM by searching, directly or indirectly, for indications of New Physics. The extensive physics program requires increasingly advanced computational and algorithmic techniques. In the last decades, Machine Learning (ML) methods have made a prominent appearance in the field of particle physics, and promise to address many challenges faced by the LHC. This thesis presents the analysis that led to the observation of the SM Higgs boson decay into pairs of bottom quarks. The analysis exploits the production of a Higgs boson associated with a vector boson whose signatures enable efficient triggering and powerful background reduction. The main strategy to maximise the signal sensitivity is based on a multivariate approach. The analysis is performed on a dataset corresponding to a luminosity of 79.8/fb collected by the ATLAS experiment during Run-2 at a centre-of-mass energy of 13 TeV. An excess of events over the expected background is found with an observed (expected) significance of 4.9 (4.3) standard deviation. A combination with results from other \Hbb searches provides an observed (expected) significance of 5.4 (5.5). The corresponding ratio between the signal yield and the SM expectation is 1.01 +- 0.12 (stat.)+ 0.16-0.15(syst.). The 'observation' analysis was further extended to provide a finer interpretation of the V H(H bb) signal measurement. The cross sections for the VH production times the H bb branching ratio have been measured in exclusive regions of phase space. These measurements are used to search for possible deviations from the SM with an effective field theory approach, based on anomalous couplings of the Higgs boson. The results of the cross-section measurements, as well as the constraining of the operators that affect the couplings of the Higgs boson to the vector boson and the bottom quarks, have been documented and discussed in this thesis. This thesis also describes a novel technique for the fast simulation of the forward calorimeter response, based on similarity search methods. Such techniques constitute a branch of ML and include clustering and indexing methods that enable quick and efficient searches for vectors similar to each other. The new simulation approach provides optimal results in terms of detector resolution response and reduces the computational requirements of a standard particles simulation.

Learning Decision Sequences For Repetitive Processes-Selected Algorithms (Paperback, 1st ed. 2022): Wojciech Rafajlowicz Learning Decision Sequences For Repetitive Processes-Selected Algorithms (Paperback, 1st ed. 2022)
Wojciech Rafajlowicz
R3,744 Discovery Miles 37 440 Ships in 18 - 22 working days

This book provides tools and algorithms for solving a wide class of optimization tasks by learning from their repetitions. A unified framework is provided for learning algorithms that are based on the stochastic gradient (a golden standard in learning), including random simultaneous perturbations and the response surface the methodology. Original algorithms include model-free learning of short decision sequences as well as long sequences-relying on model-supported gradient estimation. Learning is based on whole sequences of a process observation that are either vectors or images. This methodology is applicable to repetitive processes, covering a wide range from (additive) manufacturing to decision making for COVID-19 waves mitigation. A distinctive feature of the algorithms is learning between repetitions-this idea extends the paradigms of iterative learning and run-to-run control. The main ideas can be extended to other decision learning tasks, not included in this book. The text is written in a comprehensible way with the emphasis on a user-friendly presentation of the algorithms, their explanations, and recommendations on how to select them. The book is expected to be of interest to researchers, Ph.D., and graduate students in computer science and engineering, operations research, decision making, and those working on the iterative learning control.

Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XII... Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XII (Paperback, 1st ed. 2022)
Shai Avidan, Gabriel Brostow, Moustapha Cisse, Giovanni Maria Farinella, Tal Hassner
R3,020 Discovery Miles 30 200 Ships in 18 - 22 working days

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23-27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XIV... Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XIV (Paperback, 1st ed. 2022)
Shai Avidan, Gabriel Brostow, Moustapha Cisse, Giovanni Maria Farinella, Tal Hassner
R3,018 Discovery Miles 30 180 Ships in 18 - 22 working days

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23-27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXIX... Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXIX (Paperback, 1st ed. 2022)
Shai Avidan, Gabriel Brostow, Moustapha Cisse, Giovanni Maria Farinella, Tal Hassner
R3,020 Discovery Miles 30 200 Ships in 18 - 22 working days

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23-27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXIX... Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXIX (Paperback, 1st ed. 2022)
Shai Avidan, Gabriel Brostow, Moustapha Cisse, Giovanni Maria Farinella, Tal Hassner
R3,012 Discovery Miles 30 120 Ships in 18 - 22 working days

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23-27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Statistical Foundations of Actuarial Learning and its Applications (Paperback, 1st ed. 2023): Mario V. W'Uthrich, Michael... Statistical Foundations of Actuarial Learning and its Applications (Paperback, 1st ed. 2023)
Mario V. W'Uthrich, Michael Merz
R1,382 Discovery Miles 13 820 Ships in 18 - 22 working days

This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice. Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features. Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.

Machine Learning and Its Application to Reacting Flows - ML and Combustion (Paperback, 1st ed. 2023): Nedunchezhian... Machine Learning and Its Application to Reacting Flows - ML and Combustion (Paperback, 1st ed. 2023)
Nedunchezhian Swaminathan, Alessandro Parente
R1,310 Discovery Miles 13 100 Ships in 18 - 22 working days

This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world's total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and "greener" combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation.

Advances in Digital Forensics XVII - 17th IFIP WG 11.9 International Conference, Virtual Event, February 1-2, 2021, Revised... Advances in Digital Forensics XVII - 17th IFIP WG 11.9 International Conference, Virtual Event, February 1-2, 2021, Revised Selected Papers (Paperback, 1st ed. 2021)
Gilbert Peterson, Sujeet Shenoi
R3,329 Discovery Miles 33 290 Ships in 18 - 22 working days

Digital forensics deals with the acquisition, preservation, examination, analysis and presentation of electronic evidence. Computer networks, cloud computing, smartphones, embedded devices and the Internet of Things have expanded the role of digital forensics beyond traditional computer crime investigations. Practically every crime now involves some aspect of digital evidence; digital forensics provides the techniques and tools to articulate this evidence in legal proceedings. Digital forensics also has myriad intelligence applications; furthermore, it has a vital role in cyber security -- investigations of security breaches yield valuable information that can be used to design more secure and resilient systems.Advances in Digital Forensics XVII describes original research results and innovative applications in the discipline of digital forensics. In addition, it highlights some of the major technical and legal issues related to digital evidence and electronic crime investigations. The areas of coverage include: themes and issues, forensic techniques, filesystem forensics, cloud forensics, social media forensics, multimedia forensics, and novel applications. This book is the seventeenth volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.9 on Digital Forensics, an international community of scientists, engineers and practitioners dedicated to advancing the state of the art of research and practice in digital forensics. The book contains a selection of thirteen edited papers from the Seventeenth Annual IFIP WG 11.9 International Conference on Digital Forensics, held virtually in the winter of 2021. Advances in Digital Forensics XVII is an important resource for researchers, faculty members and graduate students, as well as for practitioners and individuals engaged in research and development efforts for the law enforcement and intelligence communities.

Sophisticated Electromagnetic Forward Scattering Solver via Deep Learning (Paperback, 1st ed. 2022): Qiang Ren, Yinpeng Wang,... Sophisticated Electromagnetic Forward Scattering Solver via Deep Learning (Paperback, 1st ed. 2022)
Qiang Ren, Yinpeng Wang, Yongzhong Li, Shutong Qi
R3,292 Discovery Miles 32 920 Ships in 18 - 22 working days

This book investigates in detail the deep learning (DL) techniques in electromagnetic (EM) near-field scattering problems, assessing its potential to replace traditional numerical solvers in real-time forecast scenarios. Studies on EM scattering problems have attracted researchers in various fields, such as antenna design, geophysical exploration and remote sensing. Pursuing a holistic perspective, the book introduces the whole workflow in utilizing the DL framework to solve the scattering problems. To achieve precise approximation, medium-scale data sets are sufficient in training the proposed model. As a result, the fully trained framework can realize three orders of magnitude faster than the conventional FDFD solver. It is worth noting that the 2D and 3D scatterers in the scheme can be either lossless medium or metal, allowing the model to be more applicable. This book is intended for graduate students who are interested in deep learning with computational electromagnetics, professional practitioners working on EM scattering, or other corresponding researchers.

Computational Advances in Bio and Medical Sciences - 11th International Conference, ICCABS 2021, Virtual Event, December 16-18,... Computational Advances in Bio and Medical Sciences - 11th International Conference, ICCABS 2021, Virtual Event, December 16-18, 2021, Revised Selected Papers (Paperback, 1st ed. 2022)
Mukul S. Bansal, Ion Mandoiu, Marmar Moussa, Murray Patterson, Sanguthevar Rajasekaran, …
R1,492 Discovery Miles 14 920 Ships in 18 - 22 working days

This book constitutes revised selected papers from the refereed proceedings of the 11th International Conference on Computational Advances in Bio and Medical Sciences, ICCABS 2021, held as a virtual event during December 16-18, 2021. The 13 full papers included in this book were carefully reviewed and selected from 17 submissions. They were organized in topical sections as follows: Computational advances in bio and medical sciences; and computational advances in molecular epidemiology.

Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XX (Paperback,... Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XX (Paperback, 1st ed. 2022)
Shai Avidan, Gabriel Brostow, Moustapha Cisse, Giovanni Maria Farinella, Tal Hassner
R1,548 Discovery Miles 15 480 Ships in 18 - 22 working days

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23-27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Frontiers in Handwriting Recognition - 18th International Conference, ICFHR 2022, Hyderabad, India, December 4-7, 2022,... Frontiers in Handwriting Recognition - 18th International Conference, ICFHR 2022, Hyderabad, India, December 4-7, 2022, Proceedings (Paperback, 1st ed. 2022)
Utkarsh Porwal, Alicia Fornes, Faisal Shafait
R2,503 Discovery Miles 25 030 Ships in 18 - 22 working days

This book constitutes the refereed proceedings of the 18th International Conference on Frontiers in Handwriting Recognition, ICFHR 2022, which took place in Hyderabad, India, during December 4-7, 2022. The 36 full papers and 1 short paper presented in this volume were carefully reviewed and selected from 61 submissions. The contributions were organized in topical sections as follows: Historical Document Processing; Signature Verification and Writer Identification; Symbol and Graphics Recognition; Handwriting Recognition and Understanding; Handwriting Datasets and Synthetic Handwriting Generation; Document Analysis and Processing.

Machine Learning in Clinical Neuroimaging - 5th International Workshop, MLCN 2022, Held in Conjunction with MICCAI 2022,... Machine Learning in Clinical Neuroimaging - 5th International Workshop, MLCN 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings (Paperback, 1st ed. 2022)
Ahmed Abdulkadir, Deepti R. Bathula, Nicha C. Dvornek, Mohamad Habes, Seyed Mostafa Kia, …
R1,493 Discovery Miles 14 930 Ships in 18 - 22 working days

This book constitutes the refereed proceedings of the 5th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2022, held in Conjunction with MICCAI 2022, Singapore in September 2022. The book includes 17 papers which were carefully reviewed and selected from 23 full-length submissions. The 5th international workshop on Machine Learning in Clinical Neuroimaging (MLCN2022) aims to bring together the top researchers in both machine learning and clinical neuroscience as well as tech-savvy clinicians to address two main challenges: 1) development of methodological approaches for analyzing complex and heterogeneous neuroimaging data (machine learning track); and 2) filling the translational gap in applying existing machine learning methods in clinical practices (clinical neuroimaging track). The papers are categorzied into topical sub-headings: Morphometry; Diagnostics, and Aging, and Neurodegeneration.

Deep Generative Models - Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September... Deep Generative Models - Second MICCAI Workshop, DGM4MICCAI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings (Paperback, 1st ed. 2022)
Anirban Mukhopadhyay, Ilkay Oksuz, Sandy Engelhardt, Dajiang Zhu, Yixuan Yuan
R1,479 Discovery Miles 14 790 Ships in 18 - 22 working days

This book constitutes the refereed proceedings of the Second MICCAI Workshop on Deep Generative Models, DG4MICCAI 2022, held in conjunction with MICCAI 2022, in September 2022. The workshops took place in Singapore. DG4MICCAI 2022 accepted 12 papers from the 15 submissions received. The workshop focusses on recent algorithmic developments, new results, and promising future directions in Deep Generative Models. Deep generative models such as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community.

Discovery in Physics (Paperback): Katharina Morik, Wolfgang Rhode Discovery in Physics (Paperback)
Katharina Morik, Wolfgang Rhode
R3,293 Discovery Miles 32 930 Ships in 18 - 22 working days

Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 2 covers machine learning for knowledge discovery in particle and astroparticle physics. Their instruments, e.g., particle detectors or telescopes, gather petabytes of data. Here, machine learning is necessary not only to process the vast amounts of data and to detect the relevant examples efficiently, but also as part of the knowledge discovery process itself. The physical knowledge is encoded in simulations that are used to train the machine learning models. At the same time, the interpretation of the learned models serves to expand the physical knowledge. This results in a cycle of theory enhancement supported by machine learning.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Learning-Based Adaptive Control - An…
Mouhacine Benosman Paperback R2,569 Discovery Miles 25 690
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, … Paperback R3,380 Discovery Miles 33 800
Machine Learning and Pattern Recognition…
Jahan B. Ghasemi Paperback R3,925 Discovery Miles 39 250
Machine Learning and Data Science in the…
Patrick Bangert Paperback R2,877 Discovery Miles 28 770
Tactile Sensing, Skill Learning, and…
Qiang Li, Shan Luo, … Paperback R2,952 Discovery Miles 29 520
Autonomous Mobile Robots - Planning…
Rahul Kala Paperback R4,294 Discovery Miles 42 940
Machine Learning and Data Mining
I Kononenko, M Kukar Paperback R1,903 Discovery Miles 19 030
Digital Technologies for Agriculture
Narendra Rathore Singh Hardcover R6,512 Discovery Miles 65 120
Hamiltonian Monte Carlo Methods in…
Tshilidzi Marwala, Rendani Mbuvha, … Paperback R3,518 Discovery Miles 35 180
Application of Machine Learning in…
Mohammad Ayoub Khan, Rijwan Khan, … Paperback R3,433 Discovery Miles 34 330

 

Partners