![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Sequential behavior is essential to intelligence in general and a fundamental part of human activities, ranging from reasoning to language, and from everyday skills to complex problem solving. Sequence learning is an important component of learning in many tasks and application fields: planning, reasoning, robotics natural language processing, speech recognition, adaptive control, time series prediction, financial engineering, DNA sequencing, and so on. This book presents coherently integrated chapters by leading authorities and assesses the state of the art in sequence learning by introducing essential models and algorithms and by examining a variety of applications. The book offers topical sections on sequence clustering and learning with Markov models, sequence prediction and recognition with neural networks, sequence discovery with symbolic methods, sequential decision making, biologically inspired sequence learning models.
The field of machine learning and data mining in connection with pattern recognition enjoys growing popularity and attracts many researchers. Automatic pattern recognition systems have proven successful in many applications. The wide use of these systems depends on their ability to adapt to changing environmental conditions and to deal with new objects. This requires learning capabilities on the parts of these systems. The exceptional attraction of learning in pattern recognition lies in the specific data themselves and the different stages at which they get processed in a pattern recognition system. This results a specific branch within the field of machine learning. At the workshop, were presented machine learning approaches for image pre-processing, image segmentation, recognition and interpretation. Machine learning systems were shown on applications such as document analysis and medical image analysis. Many databases are developed that contain multimedia sources such as images, measurement protocols, and text documents. Such systems should be able to retrieve these sources by content. That requires specific retrieval and indexing strategies for images and signals. Higher quality database contents can be achieved if it were possible to mine these databases for their underlying information. Such mining techniques have to consider the specific characteristic of the image sources. The field of mining multimedia databases is just starting out. We hope that our workshop can attract many other researchers to this subject.
This volume contains selected papers presented at the Second Asia-Paci c C- ference on Simulated Evolution and Learning (SEAL'98), from 24 to 27 Nov- ber 1998, in Canberra, Australia. SEAL'98 received a total of 92 submissions (67 papers for the regular sessions and 25 for the applications sessions). All papers were reviewed by three independent reviewers. After review, 62 papers were - cepted for oral presentation and 13 for poster presentation. Some of the accepted papers were selected for inclusion in this volume. SEAL'98 also featured a fully refereed special session on Evolutionary Computation in Power Engineering - ganised by Professor Kit Po Wong and Dr Loi Lei Lai. Two of the ve accepted papers are included in this volume. The papers included in these proceedings cover a wide range of topics in simulated evolution and learning, from self-adaptation to dynamic modelling, from reinforcement learning to agent systems, from evolutionary games to e- lutionary economics, and from novel theoretical results to successful applications, among others. SEAL'98 attracted 94 participants from 14 di erent countries, namely A- tralia, Belgium, Brazil, Germany, Iceland, India, Japan, South Korea, New Z- land, Portugal, Sweden, Taiwan, UK and the USA. It had three distinguished international scientists as keynote speakers, giving talks on natural computation (Hans-Paul Schwefel), reinforcement learning (Richard Sutton), and novel m- els in evolutionary design (John Gero). More information about SEAL'98 is still available at http: //www.cs.adfa.edu.au/conference/seal98/.
This book is for developers who are looking for an introduction to basic concepts in NLP and machine learning. Numerous code samples and listings are included to support myriad topics. The first two chapters contain introductory material for NumPy and Pandas, followed by chapters on NLP concepts, algorithms and toolkits, machine learning, and NLP applications. The final chapters include examples of NLP tasks using TF2 and Keras, the Transformer architecture, BERT-based models, and the GPT family of models. The appendices contain introductory material (including Python code samples) for various topics, including data and statistics, Python3, regular expressions, Keras, TF2, Matplotlib and Seaborn. Companion files with source code and figures are included. FEATURES * Covers extensive topics related to natural language processing and machine learning * Includes separate appendices on data and statistics, regular expressions, data visualization, Python, Keras, TF2, and more * Features companion files with source code and color figures from the book
The increasingly active eld of Evolutionary Computation (EC) provides val- ble tools, inspired by the theory of natural selection and genetic inheritance, to problem solving, machine learning, and optimization in many real-world app- cations. Despite some early intuitions about EC, that can be dated back to the - vention of computers, and a better formal de nition of EC, made in the 1960s, the quest for real-world applications of EC only began in the late 1980s. The dramatic increase in computer performances in the last decade of the 20th c- tury gave rise to a positive feedback process: EC techniques became more and more applicable, stimulating the growth of interest in their study, and allowing, in turn, new powerful EC paradigms to be devised. In parallel with new theoretical results, the number of elds to which EC is being applied is increasing day by day, along with the complexity of applications and application domains. In particular, industrially relevant elds, such as signal and image processing, computer vision, pattern recognition, industrial control, telecommunication, scheduling and timetabling, and aerospace engineering are employing EC techniques to solve complex real-world problems.
This book constitutes the refereed proceedings of the Second European Workshop on Genetic Programming, EuroPG '99, held in Göteborg, Sweden in May 1999.The 12 revised full papers and 11 posters presented have been carefully reviewed and selected for inclusion in the book. All the relevant aspects of genetic programming are addressed ranging from traditional and foundational issues to applications in a variety of fields.
ThisvolumecontainsallthepaperspresentedattheInternationalConferenceon Algorithmic Learning Theory 1999 (ALT'99), held at Waseda University Int- nationalConferenceCenter, Tokyo, Japan, December 6?8,1999.Theconference was sponsored by the Japanese Society for Arti cial Intelligence (JSAI). In response to the call for papers, 51 papers on all aspects of algorithmic learning theory and related areas were submitted, of which 26 papers were - lected for presentation by the program committee based on their originality, quality, and relevance to the theory of machine learning. In addition to these regular papers, this volume contains three papers of invited lectures presented byKatharinaMorikoftheUniversityofDortmund, RobertE.SchapireofAT&T Labs, Shannon Lab., and Kenji Yamanishi of NEC, C&C Media Research Lab. ALT'99 is not just one of the ALT conference series, but this conference marks the tenth anniversary in the series that was launched in Tokyo, in Oc- ber 1990, for the discussion of research topics on all areas related to algorithmic learning theory. The ALT series was renamedlast year from\ALT workshop"to \ALT conference,"expressing its wider goalof providing an ideal forum to bring together researchers from both theoretical and practical learning communities, producing novel concepts and criteria that would bene t both. This movement wasre?ectedinthepaperspresentedatALT'99, wheretherewereseveralpapers motivated by application oriented problems such as noise, data precision, etc. Furthermore, ALT'99 benet ed from being held jointly with the 2nd Inter- tional Conference on Discovery Science (DS'99), the conference for discussing, among other things, more applied aspects of machine learning. Also, we could celebrate the tenth anniversary of the ALT series with researchers from both theoretical and practical communities.
Machine Intelligence 13 ushers in an exciting new phase of artificial intelligence research, one in which machine learning has emerged as a hot-bed of new theory, as a practical tool in engineering disciplines, and as a source of material for cognitive models of the human brain. Based on the Machine Intelligence Workshop of 1992, held at Strathclyde University in Scotland, the book brings together numerous papers from some of the field's leading researchers to discuss current theoretical and practical issues. Highlights include a chapter by J.A. Robinson--the founder of modern computational logic--on the field's great forefathers John von Neumann and Alan Turing, and a chapter by Stephen Muggleton that analyzes Turing's legacy in logic and machine learning. This thirteenth volume in the renowned Machine Intelligence series remains the best source of information for the latest developments in the field. All students and researchers in artificial intelligence and machine learning will want to own a copy.
This volume contains papers presented at the Fourth European Conference on ComputationalLearningTheory, whichwasheldatNordkirchenCastle, inNo- kirchen, NRW, Germany, from March 29 to 31, 1999. This conference is the fourth in a series of bi-annual conferences established in 1993. TheEuroCOLTconferencesarefocusedontheanalysisoflearningalgorithms and the theory of machine learning, and bring together researchers from a wide variety of related elds. Some of the issues and topics that are addressed include the sample and computational complexity of learning speci c model classes, frameworks modeling the interaction between the learner, teacher and the en- ronment (such as learning with queries, learning control policies and inductive inference), learningwithcomplexmodels(suchasdecisiontrees, neuralnetworks, and support vector machines), learning with minimal prior assumptions (such as mistake-bound models, universal prediction, and agnostic learning), and the study of model selection techniques. We hope that these conferences stimulate an interdisciplinary scienti c interaction that will be fruitful in all represented elds. Thirty- ve papers were submitted to the program committee for conside- tion, and twenty-one of these were accepted for presentation at the conference and publication in these proceedings. In addition, Robert Schapire (AT & T Labs), and Richard Sutton (AT & T Labs) were invited to give lectures and contribute a written version to these proceedings. There were a number of other joint events including a banquet and an excursion to Munster ] . The IFIP WG 1.4 Scholarship was awarded to Andra s Antos for his paper \Lower bounds on the rate of convergence of nonparametric pattern recognition.""
This book constitutes the thoroughly revised and refereed
post-workshop documentation of two international workshops held in
conjunction with the Pacific Rim International Conference on
Artificial Intelligence, PRICAI'96, in Cairns, Australia, in August
1996.
This book constitutes the refereed proceedings of the 10th European
Conference on Machine Learning, ECML-98, held in Chemnitz, Germany,
in April 1998.
The journey towards the autonomous enterprise has begun; there are already companies operating in a highly automated way. Every corporate decision-maker will need to understand the opportunities and risks that the autonomous enterprise presents, to learn how best to navigate the shifting competitive landscape on their journey of change. This book is your guide to this innovation, presenting the concepts in real world contexts by covering the art of the possible today and providing glimpses into the future of business.
This book comprises the articles of the 6th Econometric Workshop in Karlsruhe, Germany. In the first part approaches from traditional econometrics and innovative methods from machine learning such as neural nets are applied to financial issues. Neural Networks are successfully applied to different areas such as debtor analysis, forecasting and corporate finance. In the second part various aspects from Value-at-Risk are discussed. The proceedings describe the legal framework, review the basics and discuss new approaches such as shortfall measures and credit risk.
This edited volume on machine learning and big data analytics (Proceedings of ICMLBDA 2021) is intended to be used as a reference book for researchers and practitioners in the disciplines of computer science, electronics and telecommunication, information science, and electrical engineering. Machine learning and Big data analytics represent a key ingredients in the industrial applications for new products and services. Big data analytics applies machine learning for predictions by examining large and varied data sets-i.e., big data-to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information that can help organizations make more informed business decisions.
This book constitutes the refereed proceedings of the 8th
International Workshop on Algorithmic Learning Theory, ALT'97, held
in Sendai, Japan, in October 1997.
This book constitutes the thoroughly refereed post-conference
documentation of the First Asia-Pacific Conference on Simulated
Evolution and Learning, SEAL'96, held in Taejon, Korea, in November
1996.
Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems.
This book builds upon the foundations established in its first edition, with updated chapters and the latest code implementations to bring it up to date with Tensorflow 2.0. Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. You'll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, you'll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE. Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications. What You Will Learn Understand full-stack deep learning using TensorFlow 2.0 Gain an understanding of the mathematical foundations of deep learning Deploy complex deep learning solutions in production using TensorFlow 2.0 Understand generative adversarial networks, graph attention networks, and GraphSAGE Who This Book Is For: Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts.
The complexity of systems studied in distributed artificial intelligence (DAI), such as multi-agent systems, often makes it extremely difficult or even impossible to correctly and completely specify their behavioral repertoires and dynamics. There is broad agreement that such systems should be equipped with the ability to learn in order to improve their future performance autonomously. The interdisciplinary cooperation of researchers from DAI and machine learning (ML) has established a new and very active area of research and development enjoying steadily increasing attention from both communities. This state-of-the-art report documents current and ongoing developments in the area of learning in DAI systems. It is indispensable reading for anybody active in the area and will serve as a valuable source of information.
This book constitutes the refereed proceedings of the Ninth
European Conference on Machine Learning, ECML-97, held in Prague,
Czech Republic, in April 1997.
This book constitutes the refereed proceedings of the Third
European Conference on Computational Learning Theory, EuroCOLT'97,
held in Jerusalem, Israel, in March 1997.
This book constitutes the refereed proceedings of the 7th
International Workshop on Algorithmic Learning Theory, ALT '96,
held in Sydney, Australia, in October 1996.
This book includes a selection of twelve carefully revised papers
chosen from the papers accepted for presentation at the 4th
IEEE/Nagoya-University World Wisepersons Workshop held in Nagoya in
November 1995.
This book constitutes the refereed proceedings of the Third
International Colloquium on Grammatical Inference, ICGI-96, held in
Montpellier, France, in September 1996.
This book provides a full presentation of the current concepts and available techniques to make "machine learning" systems more explainable. The approaches presented can be applied to almost all the current "machine learning" models: linear and logistic regression, deep learning neural networks, natural language processing and image recognition, among the others. Progress in Machine Learning is increasing the use of artificial agents to perform critical tasks previously handled by humans (healthcare, legal and finance, among others). While the principles that guide the design of these agents are understood, most of the current deep-learning models are "opaque" to human understanding. Explainable AI with Python fills the current gap in literature on this emerging topic by taking both a theoretical and a practical perspective, making the reader quickly capable of working with tools and code for Explainable AI. Beginning with examples of what Explainable AI (XAI) is and why it is needed in the field, the book details different approaches to XAI depending on specific context and need. Hands-on work on interpretable models with specific examples leveraging Python are then presented, showing how intrinsic interpretable models can be interpreted and how to produce "human understandable" explanations. Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are "opaque." Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future. Taking a practical perspective, the authors demonstrate how to effectively use ML and XAI in science. The final chapter explains Adversarial Machine Learning and how to do XAI with adversarial examples. |
![]() ![]() You may like...
Interaction Between Compilers and…
Gyungho Lee, Pen-Chung Yew
Hardcover
R2,963
Discovery Miles 29 630
Radiotherapy Treatment Planning…
J.Donald Chapman, Alan E. Nahum
Paperback
R1,574
Discovery Miles 15 740
Computational Fluid and Particle…
Jiyuan Tu, Kiao Inthavong, …
Hardcover
R5,490
Discovery Miles 54 900
Radiation and Detectors - Introduction…
Lucio Cerrito
Hardcover
Computational Fluid and Particle…
Jiyuan Tu, Kiao Inthavong, …
Paperback
R5,889
Discovery Miles 58 890
|