![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Machine learning
Automated trading in electronic markets is one of the most common and consequential applications of autonomous software agents. Design of effective trading strategies requires thorough understanding of how market mechanisms operate, and appreciation of strategic issues that commonly manifest in trading scenarios. Drawing on research in auction theory and artificial intelligence, this book presents core principles of strategic reasoning that apply to market situations. The author illustrates trading strategy choices through examples of concrete market environments, such as eBay, as well as abstract market models defined by configurations of auctions and traders. Techniques for addressing these choices constitute essential building blocks for the design of trading strategies for rich market applications. The lecture assumes no prior background in game theory or auction theory, or artificial intelligence. Table of Contents: Introduction / Example: Bidding on eBay / Auction Fundamentals / Continuous Double Auctions / Interdependent Markets / Conclusion
Understand advanced data analytics concepts such as time series and principal component analysis with ETL, supervised learning, and PySpark using Python. This book covers architectural patterns in data analytics, text and image classification, optimization techniques, natural language processing, and computer vision in the cloud environment. Generic design patterns in Python programming is clearly explained, emphasizing architectural practices such as hot potato anti-patterns. You'll review recent advances in databases such as Neo4j, Elasticsearch, and MongoDB. You'll then study feature engineering in images and texts with implementing business logic and see how to build machine learning and deep learning models using transfer learning. Advanced Analytics with Python, 2nd edition features a chapter on clustering with a neural network, regularization techniques, and algorithmic design patterns in data analytics with reinforcement learning. Finally, the recommender system in PySpark explains how to optimize models for a specific application. What You'll Learn Build intelligent systems for enterprise Review time series analysis, classifications, regression, and clustering Explore supervised learning, unsupervised learning, reinforcement learning, and transfer learning Use cloud platforms like GCP and AWS in data analytics Understand Covers design patterns in Python Who This Book Is For Data scientists and software developers interested in the field of data analytics.
This two volume set (LNCS 6791 and LNCS 6792) constitutes the
refereed proceedings of the 21th International Conference on
Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in
June 2011.
The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions
Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels
Candlesticks have become a key component of platforms and charting programs for financial trading. With these charts, traders can learn underlying patterns for interpreting price action history and forecasts. This A-Z guide shows portfolio managers, quants, strategists, and analysts how to use Python to recognize, scan, trade, and backtest the profitability of candlestick patterns. Financial author, trading consultant, and institutional market strategist Sofien Kaabar shows you how to create a candlestick scanner and indicator so you can compare the profitability of these patterns. With this hands-on guide, you'll also explore a new type of charting system similar to candlesticks, as well as new patterns that have never been presented before. With this book, you will: Create and understand the conditions required for classic and modern candlestick patterns Learn the market psychology behind them Use a framework to learn how backtesting trading strategies are conducted Explore different charting systems and understand their limitations Import OHLC historical FX data in Python in different time frames Use algorithms to scan for and reproduce patterns Learn a pattern's potential by evaluating its profitability and predictability
Network models are critical tools in business, management, science and industry. "Network Models and Optimization" presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.
The first International Workshop on Machine Learning in Medical Imaging, MLMI 2010, was held at the China National Convention Center, Beijing, China on Sept- ber 20, 2010 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2010. Machine learning plays an essential role in the medical imaging field, including image segmentation, image registration, computer-aided diagnosis, image fusion, ima- guided therapy, image annotation, and image database retrieval. With advances in me- cal imaging, new imaging modalities, and methodologies such as cone-beam/multi-slice CT, 3D Ultrasound, tomosynthesis, diffusion-weighted MRI, electrical impedance to- graphy, and diffuse optical tomography, new machine-learning algorithms/applications are demanded in the medical imaging field. Single-sample evidence provided by the patient's imaging data is often not sufficient to provide satisfactory performance; the- fore tasks in medical imaging require learning from examples to simulate a physician's prior knowledge of the data. The MLMI 2010 is the first workshop on this topic. The workshop focuses on major trends and challenges in this area, and works to identify new techniques and their use in medical imaging. Our goal is to help advance the scientific research within the broad field of medical imaging and machine learning. The range and level of submission for this year's meeting was of very high quality. Authors were asked to submit full-length papers for review. A total of 38 papers were submitted to the workshop in response to the call for papers.
Human and machine discovery are gradual problem-solving processes of searching large problem spaces for incompletely defined goal objects. Research on problem solving has usually focused on searching an `instance space' (empirical exploration) and a `hypothesis space' (generation of theories). In scientific discovery, searching must often extend to other spaces as well: spaces of possible problems, of new or improved scientific instruments, of new problem representations, of new concepts, and others. This book focuses especially on the processes for finding new problem representations and new concepts, which are relatively new domains for research on discovery. Scientific discovery has usually been studied as an activity of individual investigators, but these individuals are positioned in a larger social structure of science, being linked by the `blackboard' of open publication (as well as by direct collaboration). Even while an investigator is working alone, the process is strongly influenced by knowledge and skills stored in memory as a result of previous social interactions. In this sense, all research on discovery, including the investigations on individual processes discussed in this book, is social psychology, or even sociology.
In machine learning applications, practitioners must take into account the cost associated with the algorithm. These costs include: Cost of acquiring training data Cost of data annotation/labeling and cleaning Computational cost for model fitting, validation, and testing Cost of collecting features/attributes for test data Cost of user feedback collection Cost of incorrect prediction/classification Cost-Sensitive Machine Learning is one of the first books to provide an overview of the current research efforts and problems in this area. It discusses real-world applications that incorporate the cost of learning into the modeling process. The first part of the book presents the theoretical underpinnings of cost-sensitive machine learning. It describes well-established machine learning approaches for reducing data acquisition costs during training as well as approaches for reducing costs when systems must make predictions for new samples. The second part covers real-world applications that effectively trade off different types of costs. These applications not only use traditional machine learning approaches, but they also incorporate cutting-edge research that advances beyond the constraining assumptions by analyzing the application needs from first principles. Spurring further research on several open problems, this volume highlights the often implicit assumptions in machine learning techniques that were not fully understood in the past. The book also illustrates the commercial importance of cost-sensitive machine learning through its coverage of the rapid application developments made by leading companies and academic research labs.
Data integration is a critical problem in our increasingly interconnected but inevitably heterogeneous world. There are numerous data sources available in organizational databases and on public information systems like the World Wide Web. Not surprisingly, the sources often use different vocabularies and different data structures, being created, as they are, by different people, at different times, for different purposes. The goal of data integration is to provide programmatic and human users with integrated access to multiple, heterogeneous data sources, giving each user the illusion of a single, homogeneous database designed for his or her specific need. The good news is that, in many cases, the data integration process can be automated. This book is an introduction to the problem of data integration and a rigorous account of one of the leading approaches to solving this problem, viz., the relational logic approach. Relational logic provides a theoretical framework for discussing data integration. Moreover, in many important cases, it provides algorithms for solving the problem in a computationally practical way. In many respects, relational logic does for data integration what relational algebra did for database theory several decades ago. A companion web site provides interactive demonstrations of the algorithms. Table of Contents: Preface / Interactive Edition / Introduction / Basic Concepts / Query Folding / Query Planning / Master Schema Management / Appendix / References / Index / Author Biography Don't have access? Recommend our Synthesis Digital Library to your library or purchase a personal subscription. Email [email protected] for details.
Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration
The emphasis of the book is on the question of Why - only if why an algorithm is successful is understood, can it be properly applied, and the results trusted. Algorithms are often taught side by side without showing the similarities and differences between them. This book addresses the commonalities, and aims to give a thorough and in-depth treatment and develop intuition, while remaining concise. This useful reference should be an essential on the bookshelves of anyone employing machine learning techniques. The author's webpage for the book can be accessed here.
Build your own chatbot using Python and open source tools. This book begins with an introduction to chatbots where you will gain vital information on their architecture. You will then dive straight into natural language processing with the natural language toolkit (NLTK) for building a custom language processing platform for your chatbot. With this foundation, you will take a look at different natural language processing techniques so that you can choose the right one for you. The next stage is to learn to build a chatbot using the API.ai platform and define its intents and entities. During this example, you will learn to enable communication with your bot and also take a look at key points of its integration and deployment. The final chapter of Building Chatbots with Python teaches you how to build, train, and deploy your very own chatbot. Using open source libraries and machine learning techniques you will learn to predict conditions for your bot and develop a conversational agent as a web application. Finally you will deploy your chatbot on your own server with AWS. What You Will Learn Gain the basics of natural language processing using Python Collect data and train your data for the chatbot Build your chatbot from scratch as a web app Integrate your chatbots with Facebook, Slack, and Telegram Deploy chatbots on your own server Who This Book Is For Intermediate Python developers who have no idea about chatbots. Developers with basic Python programming knowledge can also take advantage of the book.
This book constitutes the thoroughly refereed post-workshop proceedings of the 2008 Pacific Rim Knowledge Acquisition Workshop, PKAW 2008, held in Hanoi, Vietnam, in December 2008 as part of 10th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2008. The 20 revised papers presented were carefully reviewed and selected from 57 submissions and went through two rounds of reviewing and improvement. The papers are organized in topical sections on machine learning and data mining, incremental knowledge acquisition, web-based techniques and applications, as well as domain specific knowledge acquisition methods and applications.
Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion
This LNCS volume contains the papers presented at SEAL 2008, the 7th Int- nationalConference on Simulated Evolutionand Learning, held December 7-10, 2008, in Melbourne, Australia. SEAL is a prestigious international conference series in evolutionary computation and learning. This biennial event was ?rst held in Seoul, Korea, in 1996, and then in Canberra, Australia (1998), Nagoya, Japan (2000), Singapore (2002), Busan, Korea (2004), and Hefei, China (2006). SEAL 2008 received 140 paper submissions from more than 30 countries. After a rigorous peer-review process involving at least 3 reviews for each paper (i.e., over 420 reviews in total), the best 65 papers were selected to be presented at the conference and included in this volume, resulting in an acceptance rate of about 46%. The papers included in this volume cover a wide range of topics in simulated evolution and learning: from evolutionarylearning to evolutionary optimization, from hybrid systems to adaptive systems, from theoretical issues to real-world applications. They represent some of the latest and best research in simulated evolution and learning in the world
Volume IX of the Transactions on Rough Sets (TRS) provides evidence of the continuing growth of a number of research streams that were either directly or indirectly begun by the seminal work on rough sets by Zdzis law Pawlak (1926- 1 2006) .OneoftheseresearchstreamsinspiredbyProf.Pawlakisroughset-based intelligent systems, a topic that was an important part of his early 1970s work on knowledge description systems prior to his discovery of rough sets during the early 1980s. Evidence of intelligent systems as a recurring motif over the past twodecadescanbefoundintherough-setliteraturethatnowincludesover4,000 2 publications by more than 1,600 authors in the rough set database . This volume of the TRS includes articles that are extensions of papers in- 3 cludedinthe?rstconferenceonRoughSetsandIntelligentSystemsParadigms . In addition to research on intelligent systems, this volume also presents papers that re?ect the profound in?uence of a number of other research initiatives by Zdzis law Pawlak. In particular, this volume introduces a number of new advances in the fo- dations and applications of arti?cial intelligence, engineering, image processing, logic, mathematics, medicine, music, and science. These advances have sign- icant implications in a number of research areas such as attribute reduction, approximation schemes, category-based inductive reasoning, classi?ers, classi- ing mappings, context algebras, data mining, decision attributes, decision rules, decision support, diagnostic feature analysis, EEG classi?cation, feature ana- sis, granular computing, hierarchical classi?ers, indiscernibility relations, inf- mationgranulation, informationsystems, musicalrhythm retrieval, probabilistic dependencies, reducts, rough-fuzzy C-means, rough inclusion functions, rou- ness, singing voice recognition, and vagueness. A total of 47 researchers are represented in this volu
VolumeVIIIoftheTransactions on Rough Sets (TRS)containsa widespectrum of contributions to the theory and applications of rough sets. The pioneering work by Prof. Zdzis law Pawlak led to the introduction of knowledge representation systems during the early 1970s and the discovery of rough sets during the early 1980s. During his lifetime, he nurtured worldwide interest in approximation, approximate reasoning, and rough set theory and its 1 applications . Evidence of the in?uence of Prof. Pawlak's work can be seen in the growth in the rough-set literature that now includes over 4000 publications 2 by more than 1900 authors in the rough set database as well as the growth and 3 maturity of the International Rough Set Society . This volume of TRS presents papers that introduce a number of new - vances in the foundations and applications of arti?cial intelligence, engineering, logic, mathematics, and science. These advances have signi?cant implications in a number of researchareas.In addition, it is evident from the papers included in this volume that roughset theoryand its application forma veryactiveresearch area worldwide. A total of 58 researchers from 11 countries are represented in this volume, namely, Australia, Canada, Chile, Germany, India, Poland, P.R. China, Oman, Spain, Sweden, and the USA. Evidence of the vigor, breadth, and depth of research in the theory and applications rough sets can be found in the articles in this volume. This volume contains 17 papers that explore a number of research streams.
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
Artificial systems that think and behave intelligently are one of the most exciting and challenging goals of Artificial Intelligence. Action Programming is the art and science of devising high-level control strategies for autonomous systems which employ a mental model of their environment and which reason about their actions as a means to achieve their goals. Applications of this programming paradigm include autonomous software agents, mobile robots with high-level reasoning capabilities, and General Game Playing. These lecture notes give an in-depth introduction to the current state-of-the-art in action programming. The main topics are knowledge representation for actions, procedural action programming, planning, agent logic programs, and reactive, behavior-based agents. The only prerequisite for understanding the material in these lecture notes is some general programming experience and basic knowledge of classical first-order logic. Table of Contents: Introduction / Mathematical Preliminaries / Procedural Action Programs / Action Programs and Planning / Declarative Action Programs / Reactive Action Programs / Suggested Further Reading
Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. Biometric compression methods, the compact disc, the computerized axial tomography (CAT) scanner in medicine, JPEG compression, and spectral analysis of time-series data are among the many applications of classical Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Generalizing harmonic analysis to discrete spaces poses many challenges: a discrete representation of the space must be adaptively acquired; basis functions are not pre-defined, but rather must be constructed. Algorithms for efficiently computing and representing bases require dealing with the curse of dimensionality. However, the benefits can outweigh the costs, since the extracted basis functions outperform parametric bases as they often reflect the irregular shape of a particular state space. Case studies from computer graphics, information retrieval, machine learning, and state space planning are used to illustrate the benefits of the proposed framework, and the challenges that remain to be addressed. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers to explore this exciting area of research. Table of Contents: Overview / Vector Spaces / Fourier Bases on Graphs / Multiscale Bases on Graphs / Scaling to Large Spaces / Case Study: State-Space Planning / Case Study: Computer Graphics / Case Study: Natural Language / Future Directions
As one of the most comprehensive machine learning texts around, this book does justice to the field's incredible richness, but without losing sight of the unifying principles. Peter Flach's clear, example-based approach begins by discussing how a spam filter works, which gives an immediate introduction to machine learning in action, with a minimum of technical fuss. Flach provides case studies of increasing complexity and variety with well-chosen examples and illustrations throughout. He covers a wide range of logical, geometric and statistical models and state-of-the-art topics such as matrix factorisation and ROC analysis. Particular attention is paid to the central role played by features. The use of established terminology is balanced with the introduction of new and useful concepts, and summaries of relevant background material are provided with pointers for revision if necessary. These features ensure Machine Learning will set a new standard as an introductory textbook.
Game theory is the mathematical study of interaction among independent, self-interested agents. The audience for game theory has grown dramatically in recent years, and now spans disciplines as diverse as political science, biology, psychology, economics, linguistics, sociology, and computer science, among others. What has been missing is a relatively short introduction to the field covering the common basis that anyone with a professional interest in game theory is likely to require. Such a text would minimize notation, ruthlessly focus on essentials, and yet not sacrifice rigor. This Synthesis Lecture aims to fill this gap by providing a concise and accessible introduction to the field. It covers the main classes of games, their representations, and the main concepts used to analyze them.
This volume contains a collection of the papers presented during the First International ACM-L Workshop, which was held in Tucson, Arizona, on November 8, 2006, during the 25th International Conference on Conceptual Modeling, ER 2006. The workshop focused on enhancing the fundamental understanding of how to model continual learning from past experiences and how to capture knowledge from transitions between system states. Active conceptual modeling is a continual process of describing all aspects of a domain, its activities, and changes from different perspectives based on our knowledge and understanding. Included in this state-of-the-art survey are 11 revised full papers, carefully reviewed and selected from the workshop presentations. Rounded off with 4 invited lectures and an introductory and motivational overview, these papers represent the current thinking in conceptual modeling research. |
![]() ![]() You may like...
Machine Learning Techniques for Pattern…
Mohit Dua, Ankit Kumar Jain
Hardcover
R8,843
Discovery Miles 88 430
Cyber-Physical System Solutions for…
Vanamoorthy Muthumanikandan, Anbalagan Bhuvaneswari, …
Hardcover
R7,369
Discovery Miles 73 690
Cognitive Data Models for Sustainable…
Siddhartha Bhattacharyya, Naba Kumar Mondal, …
Paperback
R2,864
Discovery Miles 28 640
Machine Learning for Planetary Science
Joern Helbert, Mario D'Amore, …
Paperback
R3,500
Discovery Miles 35 000
Event Mining for Explanatory Modeling
Laleh Jalali, Ramesh Jain
Hardcover
R1,421
Discovery Miles 14 210
Deep Learning for Chest Radiographs…
Yashvi Chandola, Jitendra Virmani, …
Paperback
R2,124
Discovery Miles 21 240
Hardware Accelerator Systems for…
Shiho Kim, Ganesh Chandra Deka
Hardcover
R4,095
Discovery Miles 40 950
Research Anthology on Machine Learning…
Information R Management Association
Hardcover
R17,898
Discovery Miles 178 980
|