![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Magnetic resonance
Annual Reports on NMR Spectroscopy, Volume 95, provides an in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications. In recent years, no other technique has gained as much significance. It is used in all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. This book has established itself as a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications pertaining to NMR spectroscopy.
Annual Reports on NMR Spectroscopy, Volume 91 provides a thorough and in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications for chemists and physicists to study the structure and dynamics of molecules. This updated release in the series focuses on topics surrounding NMR relaxation in dendrimers, MRI studies of spatial distribution of charge carriers, and MRI studies of plastic crystals, amongst other timely topics. As no other technique has gained as much significance as NMR spectroscopy in recent years, this series, for both specialists and non-specialists, is an ideal resource for the latest information in the field.
Even the most cursory survey of the chemical literature reveals that modern NMR spectroscopy has indeed fulfilled its potential as a powerful and indispensable tool for probing molecular structure, providing detail that is comparable to, and sometimes surpasses that, of X-ray crystallography. As NMR spectroscopy's 70th anniversary approaches, the diversity of chemical problems to which this technique can be applied continues to grow across many scientific fields. Beyond the laboratory setting, the technology underlying NMR is now a widely used and critical medical diagnostic technique, Magnetic Resonance Imaging (MRI). Unfortunately, the number of applications of NMR spectroscopy across so many STEM-related fields presents significant challenges in how best to introduce this powerful technique in meaningful ways at the undergraduate level. Inspired by the development of the field, and building upon the work of previous symposia and an ACS symposium series book on this topic (3), a symposium was developed, entitled "NMR Spectroscopy in the Undergraduate Curriculum," for the 239th American Chemical Society National Meeting in San Francisco. This book brings together all of the presenters who have been successful in developing and successfully integrating NMR spectroscopy pedagogy across their undergraduate curriculums. Their knowledge and experiences will aid readers who are interested in expanding and invigorating their own curriculum.
Nuclear magnetic resonance (NMR) is an analytical tool used by
chemists and physicists to study the structure and dynamics of
molecules. In recent years, no other technique has gained such
significance as NMR spectroscopy. It is used in all branches of
science in which precise structural determination is required and
in which the nature of interactions and reactions in solution is
being studied. "Annual Reports on NMR Spectroscopy" has established
itself as a premier means for the specialist and non-specialist
alike to become familiar with new techniques and applications of
NMR spectroscopy. Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained such significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. "Annual Reports on NMR Spectroscopy" has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy.
Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.
The first book of its kind to describe the art of NMR using
everyday examples.
The first book of its kind to describe the art of NMR using
everyday examples.
With applications across chemistry, physics and medicine, nuclear magnetic resonance is a proven, uniquely versatile and powerful spectroscopic technique. The success of NMR and its constant redevelopment means that the literature is vast and wide-ranging. Each chapter in this volume is a distillation of the key recent literature in different areas, covering the spectrum of NMR theory and practice, and including solid-state NMR, solution NMR of small molecules and NMR of living systems. These reports are invaluable both for new researchers wishing to engage with literature for the first time, and for seasoned practitioners, particularly service managers, needing to keep in touch with the ever-expanding ways in which NMR is used.
NMR spectroscopy has found a wide range of applications in life sciences over recent decades. Providing a comprehensive amalgamation of the scattered knowledge of how to apply high-resolution NMR techniques to biomolecular systems, this book will break down the conventional stereotypes in the use of NMR for structural studies. The major focus is on novel approaches in NMR which deal with the functional interface of either protein-protein interactions or protein-lipid interactions. Bridging the gaps between structural and functional studies, the Editors believe a thorough compilation of these studies will open an entirely new dimension of understanding of crucial functional motifs. This in turn will be helpful for future applications into drug design or better understanding of systems. The book will appeal to NMR practitioners in industry and academia who are looking for a comprehensive understanding of the possibilities of applying high-resolution NMR spectroscopic techniques in probing biomolecular interactions.
Reactive Species Detection in Biology: From Fluorescence to Electron Paramagnetic Resonance Spectroscopy discusses the reactive oxygen species that have been implicated in the pathogenesis of various diseases, presenting theories, chemistries, methodologies, and various applications for the detection of reactive species in biological systems, both in-vitro and in-vivo. Techniques covered include fluorescence, high performance chromatography, mass spectrometry, immunochemistry, and electron paramagnetic resonance spectroscopy. Probe design and development are also reviewed in order to advance new approaches in radical detection through synthesis, computations, or experimental applications.
The progress in nuclear magnetic resonance (NMR) spectroscopy that took place during the last several decades is observed in both experimental capabilities and theoretical approaches to study the spectral parameters. The scope of NMR spectroscopy for studying a large series of molecular problems has notably broadened. However, at the same time, it requires specialists to fully use its potentialities. This is a notorious problem and it is reflected in the current literature where this spectroscopy is typically only used in a routine way. Also, it is seldom used in several disciplines in which it could be a powerful tool to study many problems. The main aim of this book is to try to help reverse these trends. This book is divided in three parts dealing with 1)
high-resolution NMR parameters; 2) methods for understanding
high-resolution NMR parameters; and 3) some experimental aspects of
high-resolution NMR parameters for studying molecular structures.
Each part is divided into chapters written by different specialists
who use different methodologies in their work. In turn, each
chapter is divided into sections. Some features of the different
sections are highlighted: it is expected that part of the
readership will be interested only in the basic aspects of some
chapters, while other readers will be interested in deepening their
understanding of the subject dealt with in them. Contributions by specialists who use the discussed methodologies in their everyday work
Annual Reports on NMR Spectroscopy provides a thorough and in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications. Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained as much significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required, and where the nature of interactions and reactions in solution is being studied. This book has established itself as a premier means for both specialists and non-specialists looking to familiarize themselves with the newest techniques and applications pertaining to NMR spectroscopy.
Imaging by Nuclear Magnetic Resonance (NMR) has been established in clinical diagnosis and is conquering materials science with a rapidly expanding number of applications in basic research as well as product and quality control for fluid flow, elastomers, and polymer materials. This book will provide graduate students, scientists and engineers with an introduction to the field. It is the first book on the subject and is likely to become the standard text for years to come.
Application of nuclear magnetic resonance span a wide range of scientific disciplines and for the first time this volume will focus on a rapidly advancing and important theme - NMR applications in industry. Providing a comprehensive yet critical review of the current literature from various industrial sectors including materials, food science, paints and coatings, polymer science, nuclear chemistry, drug discovery and process control, this volume will be an invaluable source of current methods and applications. Essential reading for those wanting to become rapidly acquainted with NMR and for the seasoned practitioner keeping up to date with the literature.
This book provides a general formalism for the calculation of the spectral correlation function for the fluctuating electromagnetic field. The procedure is applied to the radiative heat transfer and the van der Waals friction using both the semi-classical theory of the fluctuating electromagnetic field and quantum field theory. Applications of the radiative heat transfer and non-contact friction to scanning probe spectroscopy are presented. The theory gives a tentative explanation for the experimental non-contact friction data. The book explains that radiative heat transfer and the van der Waals friction are largely enhanced at short separations between the bodies due to the evanescent electromagnetic waves. Particular strong enhancement occurs if the surfaces of the bodies can support localized surface modes like surface plasmons, surface polaritons or adsorbate vibrational modes. An electromagnetic field outside a moving body can also be created by static charges which are always present on the surface of the body due to inhomogeneities, or due to a bias voltage. This electromagnetic field produces electrostatic friction which can be significantly enhanced if on the surface of the body there is a 2D electron or hole system or an incommensurate adsorbed layer of ions exhibiting acoustic vibrations.
This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.
"EPR of Free Radicals in Solids: Trends in Methods and Applications, 2nd ed. "presents a critical two volume review of the methods and applications of EPR (ESR) for the study of free radical processes in solids. Emphasis is on the progress made in the developments in EPR technology, in the application of sophisticated matrix isolation techniques and in the advancement in quantitative EPR that have occurred since the 1st edition was published. Improvements have been made also at theoretical level, with the development of methods based on first principles and their application to the calculation of magnetic properties as well as in spectral simulations. "EPR of Free Radicals in Solids I "focuses on the trends in experimental and theoretical methods to extract structural and dynamical properties of radicals and spin probes in solid matrices by continuous wave (CW) and pulsed techniques. It presents simulation techniques and software for CW and pulsed EPR as well as studies of quantum effects at low temperature. The chapters dealing with quantum chemistry methods for the theoretical interpretation of hyperfine coupling tensors and g-tensors have been much extended in this edition and a new chapter on the calculation of zero-field splitting tensors has been added. This new edition is a valuable resource to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemistry, chemical physics, materials science, biophysics, biochemistry and related fields. This new edition is a valuable resource to experimentalists and theoreticians in research involving free radicals, as well as for students of advanced courses in physical chemistry, chemical physics, materials science, biophysics, biochemistry and related fields."
This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honour of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.
As a spectroscopic method, nuclear magnetic resonance (NMR) has seen spectacular growth, both as a technique and in its applications. Today's applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules, which is covered in two reports: NMR of Proteins and Nucleic Acids and NMR of Carbohydrates, Lipids and Membranes. In his foreword to the first volume, the then editor, Professor Robin Harris announced that the series would be a discussion on the phenomena of NMR and that articles will be critical surveys of the literature. This has certainly remained the case throughout the series, and in line with its predecessors, Volume 40 aims to provide a comprehensive coverage of the relevant NMR literature. For the current volume this relates to publications appearing between June 2009 and May 2010 (the nominal period of coverage in volume 1 was July 1970 to June 1971). Compared to the previous volume there are some new members of the reporting team. Theoretical Aspects of Spin-Spin Couplings are covered by J. Jazwinski, while E. Swiezewska and J.W3/4jcik provide an account of NMR of Carbohydrates, Lipids and Membranes.
High Resolution NMR provides a broad treatment of the principles
and theory of nuclear magnetic resonance (NMR) as it is used in the
chemical sciences. It is written at an "intermediate" level, with
mathematics used to augment, rather than replace, clear verbal
descriptions of the phenomena. The book is intended to allow a
graduate student, advanced undergraduate, or researcher to
understand NMR at a fundamental level, and to see illustrations of
the applications of NMR to the determination of the structure of
small organic molecules and macromolecules, including proteins.
Emphasis is on the study of NMR in liquids, but the treatment also
includes high resolution NMR in the solid state and the principles
of NMR imaging and localized spectroscopy.
For those wanting to become rapidly aquainted with specific areas of NMR, Nuclear Magnetic Resonance provides an unrivalled scope of coverage. Seasoned practitioners of NMR will find this an invaluable source of current methods and applications. As a spectroscopic method, nuclear magnetic resonance (NMR) has seen spectacular growth, both as a technique and in its applications. Today's applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules, which is covered in two reports: NMR of Proteins and Nucleic Acids and NMR of Carbohydrates, Lipids and Membranes.
In the first volume, Professors Poole and Farach provided one of the first definitive reference tools for this field. In this second volume, the authors present a comprehensive source for subfields of ESR not covered in the first volume, including: * Sensitivity * Field Swept versus Frequency Swept Spectra * Resonators * Line Shapes * Electron Spin Echo Envelope Modulation * Hamiltonian types and symmetries * ESR Imaging * High Magnetic Fields and High Frequencies. Written by recognized experts in the field, and intended for students and researchers, these handbooks bring together wide-ranging data from diverse disciplines within ESR, and then integrate it into a comprehesive and definitive resource. An invaluable reference for all those involved in ESR research.
As a spectroscopic method, nuclear magnetic resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: ""NMR of Proteins and Nucleic Acids"" and ""NMR of Carbohydrates, Lipids and Membranes"". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an invaluable source of current methods and applications.
As a spectroscopic method, nuclear magnetic resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Nucleic Acids" and "NMR of Carbohydrates, Lipids and Membranes". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an invaluable source of current methods and applications. Volume 37 covers literature published from June 2006 to May 2007.
Nuclear Magnetic Resonance Spectroscopy (NMR) is now widely regarded as having evolved into a subscience. The field has become immensely diverse, ranging from medical use through solid state NMR to liquid state applications, with countless books and scientific journals devoted to these topics. Theoretical as well as experimental advance continues to be rapid, and has in fact accelerated by many novel innovations. This multi-authored book focuses on the latest developments in the rapidly evolving field of high resolution NMR, specifically with a view to applications on the structure elucidation of organic molecules of moderate molecular weight. Conceptually it differs from basic educational texts, hard-core scientific papers and regular review articles in that each chapter may be regarded as the authors' personal account of their special insights and results that crystallised after several years of research into a given topic. The book revolves around several themes and offers a handful of scientific "gems" of various colors, reflecting the great diversity of NMR. It contains 16 loosely connected chapters written by some of today's most accomplished NMR scientists in the world. Each chapter is a unique synthesis of the authors' previous research results in the given field, and thus projects special insights. Much emphasis has been given to the latest developments in NMR, in particular to selective pulses and pulsed field gradients. As a part of the series "Analytical Spectroscopy Library," with subsequent editions coming along this book should provide a platform for future research accounts of similar flavor. The material is presented in a mostly non-mathematical fashion, and is intended mainly for chemists, application NMR scientists and students with already some background in NMR. Some of the chapters slightly overlap in the discussed topics, which is particularly exciting in terms of gaining insight into the same area from different angles. |
![]() ![]() You may like...
Nuclear Magnetic Resonance - Volume 36
Cynthia J. Jameson, Hiroyuki Fukui, …
Hardcover
R10,718
Discovery Miles 107 180
Nuclear Magnetic Resonance - Volume 34
Cynthia J. Jameson, Hiroyuki Fukui, …
Hardcover
R10,742
Discovery Miles 107 420
Nuclear Magnetic Resonance - Volume 33
Cynthia J. Jameson, Hiroyuki Fukui, …
Hardcover
R10,728
Discovery Miles 107 280
Nuclear Magnetic Resonance Spectroscopy…
Mark A. Nanny, Roger A. Minear, …
Hardcover
Nuclear Magnetic Resonance - Volume 32
Cynthia J. Jameson, Hiroyuki Fukui, …
Hardcover
R10,739
Discovery Miles 107 390
Electron Paramagnetic Resonance - Volume…
Dieter Beckert, Mark Burkitt, …
Hardcover
R10,716
Discovery Miles 107 160
Nuclear Magnetic Resonance - Volume 31
Cynthia J. Jameson, Hiroyuki Fukui, …
Hardcover
R10,712
Discovery Miles 107 120
Nuclear Magnetic Resonance - Volume 30
Cynthia J. Jameson, Hiroyuki Fukui, …
Hardcover
R10,728
Discovery Miles 107 280
Electron Paramagnetic Resonance - Volume…
Sandra S. Eaton, Juergen Huttermann, …
Hardcover
R10,709
Discovery Miles 107 090
Nuclear Magnetic Resonance - Volume 29
Cynthia J. Jameson, M. Yamaguchi, …
Hardcover
R10,729
Discovery Miles 107 290
|