![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
Annual Reports on NMR Spectroscopy, Volume 95, provides an in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications. In recent years, no other technique has gained as much significance. It is used in all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. This book has established itself as a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications pertaining to NMR spectroscopy.
Advances in the Use of Liquid Chromatography Mass Spectrometry (LC-MS): Instrumentation Developments and Application, Volume 79, highlights the most recent LC-MS evolutions through a series of contributions by world renowned scientists that will lead the readers through the most recent innovations in the field and their possible applications. Many authoritative books on LC-MS are already present in market, describing in detail the different interfaces and their principles of operation. This book focuses more on new trends, starting with the innovations of each technique, to the most progressive challenges of LC-MS.
Annual Reports on NMR Spectroscopy, Volume 91 provides a thorough and in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications for chemists and physicists to study the structure and dynamics of molecules. This updated release in the series focuses on topics surrounding NMR relaxation in dendrimers, MRI studies of spatial distribution of charge carriers, and MRI studies of plastic crystals, amongst other timely topics. As no other technique has gained as much significance as NMR spectroscopy in recent years, this series, for both specialists and non-specialists, is an ideal resource for the latest information in the field.
This third edition of the Encyclopedia of Spectroscopy and Spectrometry, Three Volume Set provides authoritative and comprehensive coverage of all aspects of spectroscopy and closely related subjects that use the same fundamental principles, including mass spectrometry, imaging techniques and applications. It includes the history, theoretical background, details of instrumentation and technology, and current applications of the key areas of spectroscopy. The new edition will include over 80 new articles across the field. These will complement those from the previous edition, which have been brought up-to-date to reflect the latest trends in the field. Coverage in the third edition includes: Atomic spectroscopy Electronic spectroscopy Fundamentals in spectroscopy High-Energy spectroscopy Magnetic resonance Mass spectrometry Spatially-resolved spectroscopic analysis Vibrational, rotational and Raman spectroscopies The new edition is aimed at professional scientists seeking to familiarize themselves with particular topics quickly and easily. This major reference work continues to be clear and accessible and focus on the fundamental principles, techniques and applications of spectroscopy and spectrometry.
This volume is an essential handbook for anyone interested in performing the most accurate spectrophotometric or other optical property of materials measurements. The chapter authors were chosen from the leading experts in their respective fields and provide their wisdom and experience in measurements of reflectance, transmittance, absorptance, emittance, diffuse scattering, color, and fluorescence. The book provides the reader with the theoretical underpinning to the methods, the practical issues encountered in real measurements, and numerous examples of important applications. Written by the leading international experts from industry, government, and academiaWritten as a handbook, with in depth discussion of the topicsFocus on making the most accurate and reproducible measurementsMany practical applications and examples
The second edition of "Internal Photoemission Spectroscopy" thoroughly updates this vital, practical guide to internal photoemission (IPE) phenomena and measurements. The book's discussion of fundamental physical and technical aspects of IPE spectroscopic applications is supplemented by an extended overview of recent experimental results in swiftly advancing research fields. These include the development of insulating materials for advanced SiMOS technology, metal gate materials, development of heterostructures based on high-mobility semiconductors, and more. Recent results concerning the band structure of important interfaces in novel materials are covered as well. Internal photoemission involves the physics of charge carrier
photoemission from one solid to another, and different
spectroscopic applications of this phenomenon to solid state
heterojunctions. This technique complements conventional external
photoemission spectroscopy by analyzing interfaces separated from
the sample surface by a layer of a different solid or liquid.
Internal photoemission provides the most straightforward, reliable
information regarding the energy spectrum of electron states at
interfaces. At the same time, the method enables the analysis of
heterostructures relevant to modern micro- and nano-electronic
devices as well as new materials involved in their design and
fabrication.
Even the most cursory survey of the chemical literature reveals that modern NMR spectroscopy has indeed fulfilled its potential as a powerful and indispensable tool for probing molecular structure, providing detail that is comparable to, and sometimes surpasses that, of X-ray crystallography. As NMR spectroscopy's 70th anniversary approaches, the diversity of chemical problems to which this technique can be applied continues to grow across many scientific fields. Beyond the laboratory setting, the technology underlying NMR is now a widely used and critical medical diagnostic technique, Magnetic Resonance Imaging (MRI). Unfortunately, the number of applications of NMR spectroscopy across so many STEM-related fields presents significant challenges in how best to introduce this powerful technique in meaningful ways at the undergraduate level. Inspired by the development of the field, and building upon the work of previous symposia and an ACS symposium series book on this topic (3), a symposium was developed, entitled "NMR Spectroscopy in the Undergraduate Curriculum," for the 239th American Chemical Society National Meeting in San Francisco. This book brings together all of the presenters who have been successful in developing and successfully integrating NMR spectroscopy pedagogy across their undergraduate curriculums. Their knowledge and experiences will aid readers who are interested in expanding and invigorating their own curriculum.
Nuclear magnetic resonance (NMR) is an analytical tool used by
chemists and physicists to study the structure and dynamics of
molecules. In recent years, no other technique has gained such
significance as NMR spectroscopy. It is used in all branches of
science in which precise structural determination is required and
in which the nature of interactions and reactions in solution is
being studied. "Annual Reports on NMR Spectroscopy" has established
itself as a premier means for the specialist and non-specialist
alike to become familiar with new techniques and applications of
NMR spectroscopy. Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained such significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. "Annual Reports on NMR Spectroscopy" has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy.
This title provides comprehensive coverage of modern gas
chromatography including theory, instrumentation, columns, and
applications addressing the needs of advanced students and
professional scientists in industry and government laboratories.
Chapters are written by recognized experts on each topic. Each
chapter offers a complete picture with respect to its topic so
researchers can move straight to the information they need without
reading through a lot of background information.
This book brings together the latest perspectives and ideas on teaching modern physical chemistry. It includes perspectives from experienced and well-known physical chemists, a thorough review of the education literature pertaining to physical chemistry, a thorough review of advances in undergraduate laboratory experiments from the past decade, in-depth descriptions of using computers to aid student learning, and innovative ideas for teaching the fundamentals of physical chemistry. This book will provide valuable insight and information to all teachers of physical chemistry.
Nuclear magnetic resonance (NMR) is an analytical tool used by
chemists and physicists to study the structure and dynamics of
molecules. In recent years, no other technique has grown to such
importance as NMR spectroscopy. It is used in all branches of
science when precise structural determination is required and when
the nature of interactions and reactions in solution is being
studied. "Annual Reports on NMR Spectroscopy" has established
itself as a premier means for the specialist and non-specialist
alike to become familiar with new techniques and applications of
NMR spectroscopy.
Volume 6: Ionization Methods Volume 6 captures the story of molecular ionization and its phenomenal evolution that makes mass spectrometry the powerful method it is today. Chapters 1 and 2 cover fundamentals and various issues that are common to all ionization (e.g., accurate mass, isotope clusters, and derivatization). Chapters 3-9 acknowledge that some ionization methods are appropriate for gas-phase molecules and others for molecules that are in the solid or liquid states. Chapters 3-6 cover gas-phase molecules, dividing the subject into: (1) ionization of gas-phase molecules by particles (e.g., EI), (2) ionization by photons, (3) ionization by ion-molecule and molecule-molecule reactions (e.g., APCI and DART), and ionization in Strong electric fields (i.e., Electrohydrodynamic and Field Ionization/Desorption). "Ionization in a Strong Electric Field" illustrates the transition to ionization of molecules in the solid or liquid states, covered in Chapters 7-9: (1) spray methods for ionization (e.g., electrospray), (2) desorption ionization by particle bombardment (e.g., FAB), and (3) desorption by photons (e.g., MALDI). Electrospray and MALDI also lead to applications in biophysical chemistry, the theme of Chapter 10. Chapter 11 reconsiders ionization from the view of choosing an
ionization method. The range of subjects is from ionization of
organic and biomolecules to the study of microorganisms.
This third volume of NMR Spectroscopy in the Undergraduate Curriculum continues the work we started with the first and second volumes in providing effective approaches for using nuclear magnetic resonance spectrometers as powerful tools for investigating a wide variety of phenomena at the undergraduate level. This volume focuses on upper-level courses and NMR spectroscopy across the curriculum. The applications and strategies in this volume will be helpful to those who are looking to transform their curriculum by integrating more NMR spectroscopy, to those who might not have considered NMR spectroscopy as a tool for solving certain types of problems, or for those seeking funding for a new or replacement NMR spectrometer.
Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.
Though many separation processes are available for use in todays analytical laboratory, chromatographic methods are the most widely used. The applications of chromatography have grown explosively in the last four decades, owing to the development of new techniques and to the expanding need of scientists for better methods of separating complex mixtures. With its comprehensive, unified approach, this book will greatly assist the novice in need of a reference to chromatographic techniques, as well as the specialist suddenly faced with the need to switch from one technique to another.
In the past, the stability of milk and milk products was the primary consideration, but this is no longer the principal objective due to the evolution of modern sanitary practices as well as pasteurization. Today, the manufacture of dairy products of consistently good flavor and texture is crucial. In previous flavor studies, researchers identified hundreds of volatile compounds, with little or no attention paid to their sensory contribution to overall flavor of dairy products. The availability of powerful chromatographic separation techniques like high resolution gas chromatography in combination with mass spectrometry and olfactory detection ports have revolutionized the work on characterization of dairy flavor. This along with recent developments in sensory methods and our increased knowledge about the genomics of diary culture organisms have allowed great advancements in our understanding of dairy flavor chemistry. Flavor of Dairy Products covers the evolution of dairy flavor research and presents updated information in the areas of instrumental analysis, biochemistry, processing and shelf-life issues related to the flavor of dairy products.
Developing innovative efficient and sensitive spectroscopic and optical techniques for studying biomedically relevant molecules, structures and processes in vitro and in vivo is a field of rapidly growing interest. This symposium book covers novel and exciting approaches in biomedical spectroscopy. Several chapters deal with infrared and Raman spectroscopy. These complimentary vibrational spectroscopic techniques are capable of monitoring molecular structures as well as structural changes. Such studies are of interest for understanding diseases at a molecular level as well as for developing techniques for efficient early diagnosis based on molecular structural information. The chapters demonstrate also applications vibrational spectroscopy in proteomics and the characterization of micro organisms. The second section of the book introduces surface enhanced Raman scattering (SERS), demonstrates the application of the effect in the biomedical field and develops the concept of multifunctional nanosensors. The measurement of intrinsic optical signals from biological objects such as nerve tissue are discussed in the next section of the book. Chapters deal also with Coherent anti-Stokes Raman scattering (CARS) and fluorescence fluctuation spectroscopy. Other chapters illustrate how photons of very different energies, in the Terahertz and in the ultra violet range, can be used to retrieve molecular structural information from native biomolecules. The electrical properties of protein molecules adsorbed onto a gold substrate are studied by using a scanning Kelvin nanoprobe in a microarray format. The final chapters in the book demonstrate the powerful combination of different spectroscopic techniques for the characterization of biomolecules as well as native and engineered biomaterials. These chapters combine information from Raman and Inelastic Neutron Scattering, optical absorbance and energy dispersive X-ray analysis, positron annihilation lifetime spectroscopy (PALS), 1H NMR, and 129Xe NMR X-ray diffraction and fluorescence resonance energy transfer.
Photoacoustic and Photothermal Spectroscopy: Principles and Applications introduces the basic principles, instrumentation and major developments in the many applications of Photoacoustic and Photothermal Spectroscopy over the last three decades. The book explains the processes of sound generation by periodic optical excitation and ultrasonic generation by pulsed laser excitation and describes the workings of photoacoustic cells equipped with microphones and piezoelectric transducers. Photoacoustic imaging (PAI) is one of the fastest-growing imaging modalities of recent times. It combines the advantages of ultrasound and optical imaging techniques. These non-invasive and non-destructive techniques offer many benefits to users by enabling spectroscopy of opaque and inhomogeneous materials, (solid, liquid, powder, gel, gases) without any sample preparation, and more.
Annual Reports on NMR Spectroscopy, Volume 107, the latest release in a series that has established itself as a premier resource for both specialists and non-specialists interested in new techniques and applications pertaining to NMR spectroscopy, includes a variety of updated chapters covering NMR Diffusion Studies, Recent Advances in Understanding of Nucleus Contributions to NMR Nuclear Shieldings, and more.
Annual Reports on NMR Spectroscopy, Volume 106 highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
UV-Visible Spectrophotometry of Waters and Soils, Third Edition presents the latest information on the use of UV spectrophotometry for environmental quality monitoring. Using practical examples, the book illustrates how this technique can be a source of new methods of characterization and measurement. Easy and fast to run, this simple and robust analytical technique is one of the best ways to obtain a quantitative estimation of specific or aggregate parameters (e.g., Nitrate, TOC) and simultaneously qualitative information on the global composition of waters and soils. This third edition presents current methods and applications for water quality monitoring, including recent works and developments. Writing from years of experience in the development and applications of UV systems and from scientific and technical works, the book's authors provide several useful examples that show the great interest of UV spectrophotometry for water and soil monitoring. At the end of the book, the UV spectra library of previous editions is updated with new chemicals of interest.
Annual Reports on NMR Spectroscopy, Volume 105, the latest release in a series that has established itself as a premier resource for both specialists and non-specialists interested in new techniques and applications pertaining to NMR spectroscopy includes a variety of updated chapters covering Recent advances in dynamic nuclear polarization-enhanced NMR spectroscopy for organic polymers and Functional and structural characterization of membrane-binding proteins using NMR.
Annual Reports on NMR Spectroscopy, Volume 103, the latest release in a series that has established itself as a premier resource for both specialists and non-specialists interested in new techniques and applications pertaining to NMR spectroscopy includes a variety of updated chapters covering Recent Applications of 17O Solid State NMR in Biochemistry, NMR Studies of Ferromagnetic Materials, Very Fast MAS Solid State NMR Studies of Pharmaceuticals, Recent Advances in Benchtop NMR and Applications, Ultra-Fast Magic Angle Spinning Nuclear Magnetic Resonance.
Gas Chromatography, Second Edition, offers a single source of authoritative information on all aspects relating to the practice of gas chromatography. A focus on short, topic-focused chapters facilitates the identification of information that will be of immediate interest for familiar or emerging uses of gas chromatography. The book gives those working in both academia and industry the opportunity to learn, refresh and deepen their understanding of fundamental and instrumental aspects of gas chromatography and tools for the interpretation and management of chromatographic data. Users will find a consolidated guide to the selection of separation conditions and the use of auxiliary techniques. This new edition restores the contemporary character of the book with respect to those involved in advancing the technology, analyzing the data produced, or applying the technique to new application areas. New topics covered include hyphenated spectroscopic detectors, micromachined instrument platforms, derivatization and related microchemical techniques, petrochemical applications, volatile compounds in the atmosphere, and more. |
![]() ![]() You may like...
Case Studies in Geospatial Applications…
Pravat Kumar Shit, Gouri Sankar Bhunia, …
Paperback
R3,438
Discovery Miles 34 380
Handbook of Himalayan Ecosystems and…
Bikash Ranjan Parida, Arvind Chandra Pandey, …
Hardcover
R7,424
Discovery Miles 74 240
Putting Fear of Crime on the Map…
Bruce J. Doran, Melissa B. Burgess
Hardcover
R2,907
Discovery Miles 29 070
Sapiens - A Brief History Of Humankind
Yuval Noah Harari
Paperback
![]()
Guide To The Law And Legal Literature Of…
Edwin M. Borchard
Hardcover
Geospatial Information Handbook for…
John G. Lyon, Lynn Lyon
Hardcover
R8,610
Discovery Miles 86 100
Prison Chaplains on the Beat in US and…
George Walters-Sleyon
Hardcover
|