![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
This book focuses on the characterisation of the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed grid of nearly millimetre-level correlation length, while the size of a single skyrmion is 3-100 nm. This is a very challenging range of length scales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques, and, to date, extensive information on this fascinating, magnetically ordered state has remained elusive. In response, this work develops novel resonant elastic x-ray scattering (REXS) techniques, which allow the magnetic structure, including the long-range order and domain formation, as well as microscopic skyrmion parameters, to be measured across the full range of length scales. Most importantly, using circular dichroism in REXS, the internal structure of a given skyrmion, the topological winding number, and the skyrmion helicity angle can all be unambiguously determined. These new techniques are applicable to many materials systems, and allow us to retrieve information on modulated spin structures, multiferroic order, spin-density-waves, and other forms of topological magnetic order.
Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation.
This book provides an essential overview of existing state-of-the-art quantitative imaging methodologies and protocols (intensity-based ratiometric and FLIM/ PLIM). A variety of applications are covered, including multi-parametric quantitative imaging in intestinal organoid culture, autofluorescence imaging in cancer and stem cell biology, Ca2+ imaging in neural ex vivo tissue models, as well as multi-parametric imaging of pH and viscosity in cancer biology. The current state-of-the-art of 3D tissue models and their compatibility with live cell imaging is also covered. This is an ideal book for specialists working in tissue engineering and designing novel biomaterial.
Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications provides a unique source of information in an important area of chemistry.
This volume contains the proceedings of the 5th International Symposium on Symmetries in Subatomic Physics (SSP2012), that was held in Groningen, The Netherlands from 18 till 22 June 2012. This sequence of symposia is now firmly connected with one of the main branches in fundamental nuclear and particle physics, i.e. in searches for physics beyond the Standard Model, focused on the (violation of) the discrete symmetries of Parity, Charge conjugation and Time reversal invariance. This field comes in various disguises: With large experimental facilities and large collaborations, as in LHC physics or in neutrino experiments, but also as table top experiments by small groups in the field of nuclear, atomic and molecular physics, such as in searches for a permanent electric dipole moments and atomic parity violation. Bringing the practitioners of these divergent fields together gives a coherent overview and see the complementarities of the various approaches to the same question: why is the Standard Model what it is and what lies beyond it. "
In the last quarter century, advances in mass spectrometry (MS) have been at the forefront of efforts to map complex biological systems including the human metabolome, proteome, and microbiome. All of these developments have allowed MS to become a well-established molecular level technology for microorganism characterization. MS has demonstrated its considerable advantage as a rapid, accurate, and cost-effective method for microorganism identification, compared to conventional phenotypic techniques. In the last several years, applications of MS for microorganism characterization in research, clinical microbiology, counter-bioterrorism, food safety, and environmental monitoring have been documented in thousands of publications. Regulatory bodies in Europe, the US, and elsewhere have approved MS-based assays for infectious disease diagnostics. As of mid-2015, more than 3300 commercial MS systems for microorganism identification have been deployed worldwide in hospitals and clinical labs. While previous work has covered broader approaches in using MS to characterize microorganisms at the species level or above, this book focuses on strain-level and subtyping applications. In twelve individual chapters, innovators, leaders and practitioners in the field from around the world have contributed to a comprehensive overview of current and next-generation approaches for MS-based microbial characterization at the subspecies and strain levels. Chapters include up-to-date reference lists as well as web-links to databases, recommended software, and other useful tools. The emergence of new, antibiotic-resistant strains of human or animal pathogens is of extraordinary concern not only to the scientific and medical communities, but to the general public as well. Developments of novel MS-based assays for rapid identification of strains of antibiotic-resistant microorganisms are reviewed in the book as well. Microbiologists, bioanalytical scientists, infectious disease specialists, clinical laboratory and public health practitioners as well as researchers in universities, hospitals, government labs, and the pharmaceutical and biotechnology industries will find this book to be a timely and valuable resource.
This thesis investigates the transitions from one electronically excited state to another. Such processes - the fastest of events in chemistry - can be studied with femtosecond resolution, and Thomas S. Kuhlman approaches the question both with experimental and theoretical methods. His approach contributes to explain processes of high importance to all scientific fields concerned with the interaction between light and matter: the deactivation of the electronically excited states after excitation. Thomas S. Kuhlman concludes in this thesis that the electronic transition proceeds before the entire set of available degrees of freedom are active - 'It is as simple as that' !
Terahertz science and technology is attracting great interest due to its application in a wide array of fields made possible by the development of new and improved terahertz radiation sources and detectors. This book focuses on the development and characterization of one such source - namely the semi-large aperture photoconducting (PC) antenna fabricated on Fe-doped bulk Ga0.69In0.31As substrate. The high ultrafast carrier mobility, high resistivity, and subpicosecond carrier lifetime along with low bandgap make Ga0.69In0.31As an excellent candidate for PC antenna based THz emitter that can be photoexcited by compact Yb-based multiwatt laser systems for high power THz emission. The research is aimed at evaluating the impact of physical properties of a semi-large aperture Ga0.69In0.31As PC antenna upon its THz generation efficiency, and is motivated by the ultimate goal of developing a high-power terahertz radiation source for time-domain terahertz spectroscopy and imaging systems.
Mathematical Techniques in XRay Spectrometry: Research in the Quantitative Analysis of Individual Particles by XRay Fluorescence Spectrometry (M. Lankosz et al.). Analysis of Light Elements by XRay Spectrometry: XRFA of Carbon in Steels (F. Weber et al.). XRS Techniques and Instrumentation: Diffraction Peaks in XRay Spectroscopy (R.G.Tissot, R.P. Goehner). OnLine, Industrial, and Other Applications of XRS: Application of XRF in the Aluminum Industry (F.R. Feret). XRay Characterization of Thin Films: Grazing Incidence XRay Characterization of Materials (D.K. Bowen, M. Wormington). WholePattern Fitting, Phase Analysis by Diffraction Methods: Phase Identification Using WholePattern Matching (D.K. Smith et al.). Polymer Applications of XRD. HighTemperature and NonAmbient Applications of XRD. Stress and Strain Determination by Diffraction Methods, Peak Broadening Analysis. XRD Techniques and Instrumentation. 71 additional articles. Index.
This thesis presents significant advances in the imaging and theory of the ultrafast dynamics of surface plasmon polariton fields. The author details construction of a sub-10 femtosecond and sub-10 nanometer spatiotemporal resolution ultrafast photoemission microscope which is subsequently used for the discovery of topological meron and skyrmion-like plasmonic quasiparticles. In particular, this enabled the creation of movies of the surface plasmon polariton fields evolving on sub-optical wavelength scales at around 0.1 femtosecond per image frame undergoing vortex phase evolution. The key insight that the transverse spin of surface plasmon polaritons undergoes a texturing into meron or skyrmion-like topological quasiparticles (defined by the geometric charge of the preparation) follows. In addition, this thesis develops an analytical theory of these new topological quasiparticles, opening new avenues of research, while the ultrafast microscopy techniques established within will also be broadly applicable to studies of nanoscale optical excitations in electronic materials.
The subject of this book is to introduce a model-based quantitative performance indicator methodology applicable for performance, cost and reliability optimization of non-volatile memories. The complex example of flash memories is used to introduce and apply the methodology. It has been developed by the author based on an industrial 2-bit to 4-bit per cell flash development project. For the first time, design and cost aspects of 3D integration of flash memory are treated in this book. Cell, array, performance and reliability effects of flash memories are introduced and analyzed. Key performance parameters are derived to handle the flash complexity. A performance and array memory model is developed and a set of performance indicators characterizing architecture, cost and durability is defined. Flash memories are selected to apply the Performance Indicator Methodology to quantify design and technology innovation. A graphical representation based on trend lines is introduced to support a requirement based product development process. The Performance Indicator methodology is applied to demonstrate the importance of hidden memory parameters for a successful product and system development roadmap. "Flash Memories "offers an opportunity to enhance your understanding of product development key topics such as: . Reliability optimization of flash memories is all about
threshold voltage margin understanding and definition;
This book examines the most novel and state-of-the-art applications of biomaterials, with chapters that exemplify approaches with targeted drug delivery, diabetes, neurodegenerative diseases and cranioplasty implants. Expert contributors analyze biomaterials such as calcium phosphate, sol-gel and quenched glasses, metallic and polymer implants, bioactive glass, and polymer composites while also covering important areas such as the soft tissue replacement, apatites, bone regeneration and cell encapsulation. This book is appropriate for biomedical engineers, materials scientists, and clinicians who are seeking to implement the most advanced approaches and technologies with their patients.
This book describes the development of a new low-cost medium wavelength IR (MWIR) monolithic imager technology for high-speed uncooled industrial applications. It takes the baton on the latest technological advances in the field of vapor phase deposition (VPD) PbSe-based MWIR detection accomplished by the industrial partner NIT S.L., adding fundamental knowledge on the investigation of novel VLSI analog and mixed-signal design techniques at circuit and system levels for the development of the readout integrated device attached to the detector. In order to fulfill the operational requirements of VPD PbSe, this work proposes null inter-pixel crosstalk vision sensor architectures based on a digital-only focal plane array (FPA) of configurable pixel sensors. Each digital pixel sensor (DPS) cell is equipped with fast communication modules, self-biasing, offset cancellation, analog-to-digital converter (ADC) and fixed pattern noise (FPN) correction. In-pixel power consumption is minimized by the use of comprehensive MOSFET subthreshold operation.
Avarietyof?uorescentandluminescentmaterialsintheformofmolecules,their complexes,andnanoparticlesareavailableforimplementationasreportingunits intosensingtechnologies. Increasingdemandsfromtheseapplicationareasrequire developmentofnew?uorescencereportersbasedonassociationandaggregationof ?uorescencedyesandontheirincorporationintodifferentnanostructures. Inter- tionsbetweenthesedyesandtheirincorporatingmatricesleadtonewspectroscopic effectsthatcanbeactivelyusedforoptimizingthesensordesign. Oneofthese effects is a spectacular formation of J-aggregates with distinct and very sharp excitationandemissionbands. Byincorporationintonanoparticles,organicdyes offer dramatically increased brightness together with improvement of chemical stabilityandphotostability. Moreover,certaindyescanformnanoparticlesth- selvessothattheirspectroscopicpropertiesareimproved. Semiconductorquantum dotsaretheothertypeofnanoparticles thatpossessuniqueandveryattractive photophysicalandspectroscopicproperties. Manyinterestingandnotfullyund- stoodphenomenaareobservedinclusterscomposedofonlyseveralatomsofnoble metals. Inconjugatedpolymers,strongelectronicconjugationbetweenelementary chromophoricunitsresultsindramaticeffectsinquenchingandinconformati- dependentspectroscopicbehavior. Possessingsuchpowerfulanddiversearsenaloftools,wehavetoexplorethem innovelsensingandimagingtechnologiesthatcombineincreasedbrightnessand sensitivityinanalytedetectionwithsimplicityandlowcostofproduction. The present book overviews the pathways for achieving this goal. In line with the discussion on monomeric ?uorescence reporters in the accompanying book (Vol. 8ofthisseries),aninsightfulanalysisofphotophysicalmechanismsbehind the ?uorescence response of composed and nanostructured materials is made. Based on the progress in understanding these mechanisms, their realization in differentchemicalstructuresisoverviewed. vii viii Preface Demonstratingtheprogressinaninterdisciplinary?eldofresearchanddev- opment,thisbookisprimarilyaddressedtospecialistswithdifferentbackground- physicists, organic and analytical chemists, and photochemists - to those who developandapplynew?uorescencereporters. Itwillalsobeusefultospecialists inbioanalysisandbiomedicaldiagnostics. Kyiv,Ukraine AlexanderP. Demchenko June2010 Contents PartI GeneralAspects NanocrystalsandNanoparticlesVersusMolecularFluorescent LabelsasReportersforBioanalysisandtheLifeSciences: ACriticalComparison ...3 UteResch-Genger,MarkusGrabolle,RolandNitschke, andThomasNann OptimizationoftheCouplingofTargetRecognition andSignalGeneration ...41 AnaB. Descalzo,ShengchaoZhu,TobiasFischer,andKnutRurack CollectiveEffectsIn?uencingFluorescenceEmission ...107 AlexanderP. Demchenko PartII EncapsulatedDyesandSupramolecularConstructions FluorescentJ-AggregatesandTheirBiologicalApplications ...135 MykhayloYu. LosytskyyandValeriyM. Yashchuk Conjugates,Complexes,andInterlockedSystems BasedonSquarainesandCyanines ...159 LeonidD. Patsenker,AnatoliyL. Tatarets,OleksiiP. Klochko, andEwaldA. Terpetschnig PartIII Dye-DopedNanoparticlesandDendrimers Dye-DopedPolymericParticlesforSensingandImaging ...193 SergeyM. Borisov,TorstenMayr,Gu..nterMistlberger,andIngoKlimant ix x Contents Silica-BasedNanoparticles:DesignandProperties ...229 SongLiang,CarrieL. John,ShupingXu,JiaoChen,YuhuiJin, QuanYuan,WeihongTan,andJuliaX. Zhao LuminescentDendrimersasLigandsandSensors ofMetalIons ...2 53 GiacomoBergamini,EnricoMarchi,andPaolaCeroni ProspectsforOrganicDyeNanoparticles ...285 HiroshiYao PartIV LuminescentMetalNanoclusters Few-AtomSilverClustersasFluorescentReporters ...307 IsabelD?'ezandRobinH. A. Ras LuminescentQuantumClustersofGoldasBio-Labels ...333 M. A. HabeebMuhammedandT. Pradeep PartV ConjugatedPolymers Structure,EmissiveProperties,andReportingAbilities ofConjugatedPolymers ...357 MaryA. Reppy OpticalReportingbyConjugatedPolymers viaConformationalChanges ...389 RozalynA. SimonandK. PeterR. Nilsson FluorescenceReportingBasedonFRETBetweenConjugated PolyelectrolyteandOrganicDyeforBiosensorApplications ...417 Kan-YiPuandBinLiu Index ...455 PartI GeneralAspects NanocrystalsandNanoparticlesVersus MolecularFluorescentLabelsasReporters forBioanalysisandtheLifeSciences: ACriticalComparison UteResch-Genger,MarkusGrabolle,RolandNitschke,andThomasNann Abstract At the core of photoluminescence techniques are suitable ?uorescent labels and reporters, the spectroscopic properties of which control the limit of detection,thedynamicrange,andthepotentialformultiplexing.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Leading researchers discuss the past and present of chromatography More than one hundred years after Mikhail Tswett pioneered adsorption chromatography, his separation technique has developed into an important branch of scientific study. Providing a full portrait of the discipline, "Chromatography: A Science of Discovery" bridges the gap between early, twentieth-century chromatography and the cutting edge of today's research. Featuring contributions from more than fifty award-winning chromatographers, "Chromatography" offers a multifaceted look at the development and maturation of this field into its current state, as well as its importance across various scientific endeavors. The coverage includes: Consideration of chromatography as a unified science rather than just a separation method Key breakthroughs, revolutions, and paradigm shifts in chromatography Profiles of Nobel laureates who used chromatography in their research, and the role it played Recent advances in column technology Chromatography's contributions to the agricultural, space, biological/medical sciences; pharmaceutical science; and environmental, natural products, and chemical analysis Future trends in chromatography With numerous references and an engaging series of voices, "Chromatography: A Science of Discovery" offers a diverse look at an essential area of science. It is a unique and invaluable resource for researchers, students, and other interested readers who seek a broader understanding of this field.
Countercurrent chromatography (CCC) is a separation technique in
which the stationary phase is a liquid. The mobile phase is also a
liquid, so biphasic liquid systems with at least two solvents are
used. Centrifugal fields are used to hold the liquid stationary
phase while pushing the liquid mobile phase through it.
This book is the result of a working group sponsored by ISSI in
Bern, which was initially created to study possible ways to
calibrate a Far Ultraviolet (FUV) instrument after launch. In most
cases, ultraviolet instruments are well calibrated on the ground,
but unfortunately, optics and detectors in the FUV are very
sensitive to contaminants and it is very challenging to prevent
contamination before and during the test and launch sequences of a
space mission. Therefore, ground calibrations need to be confirmed
after launch and it is necessary to keep track of the temporal
evolution of the sensitivity of the instrument during the mission.
This book provides an easily understandable introduction to solid state physics for chemists and engineers. Band theory is introduced as an extension of molecular orbital theory, and its application to organic materials is described. Phenomena beyond band theory are treated in relation to magnetism and electron correlation, which are explained in terms of the valence bond theory and the Coulomb and exchange integrals. After the fundamental concepts of magnetism are outlined, the relation of correlation and superconductivity is described without assuming a knowledge of advanced physics. Molecular design of organic conductors and semiconductors is discussed from the standpoint of oxidation-reduction potentials, and after a brief survey of organic superconductors, various applications of organic semiconductor devices are described. This book will be useful not only for researchers but also for graduate students as a valuable reference.
This thesis addresses fundamental scientific questions such as: How are complex natural products synthesized in vivo? Can we replicate these conditions in a laboratory environment? What is the biological function of such secondary metabolites? What are the biological origins of chirality? These issues are explored in an accessible manner using a multidisciplinary approach spanning chemistry, biology and physics to investigate an interesting family of complex natural products isolated from marine molluscs - the tridachiahydropyrones. The work has achieved: Elegant biomimetic syntheses of a number of the tridachiahydropyrone compounds in vitro using organic synthesis techniques The characterization of the interactions between these compounds and a range of model membrane systems using a series of fluorescence spectroscopic studies The investigation of the antioxidant and photoprotective properties of the compounds by means of biophysical assay techniques The synthesis of tridachiahydropyrone utilizing the model membrane systems as biomimetic reaction media.
This work addresses the computation of excited-state properties of systems containing thousands of atoms. To achieve this, the author combines the linear response formulation of time-dependent density functional theory (TDDFT) with linear-scaling techniques known from ground-state density-functional theory. This extends the range of TDDFT, which on its own cannot tackle many of the large and interesting systems in materials science and computational biology. The strengths of the approach developed in this work are demonstrated on a number of problems involving large-scale systems, including exciton coupling in the Fenna-Matthews-Olson complex and the investigation of low-lying excitations in doped p-terphenyl organic crystals.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
The second edition deals with all essential aspects of non-relativistic quantum physics up to the quantisation of fields. In contrast to common textbooks of quantum mechanics, modern experiments are described both for the purpose of foundation of the theory and in relation to recent applications. Links are made to important research fields and applications such as elementary particle physics, solid state physics and nuclear magnetic resonance in medicine, biology and material science. Special emphasis is paid to quantum physics in nanoelectronics such as resonant tunnelling, Coulomb blockade and the realisation of quantum bits. This second edition also considers quantum transport through quantum point contacts and its application as charge detectors in nanoelectronic circuits. Also the realization and the study of electronic properties of an artificial quantum dot molecule are presented. Because of its recent interest a brief discussion of Bose-Einstein condensation has been included, as well as the recently detected Higgs particle. Another essential new addition to the present book concerns a detailed discussion of the particle picture in quantum field theory. Counterintuitive aspects of single particle quantum physics such as particle-wave duality and the Einstein-Podolski-Rosen (EPR) paradox appear more acceptable to our understanding if discussed on the background of quantum field theory. The non-locality of quantum fields explains non-local behaviour of particles in classical Schroedinger quantum mechanics. Finally, new problems have been added. The book is suitable as an introduction into quantum physics, not only for physicists but also for chemists, biologists, engineers, computer scientists and even for philosophers as far as they are interested in natural philosophy and epistemology. |
![]() ![]() You may like...
Computational Mind: A Complex Dynamics…
Vladimir G. Ivancevic, Tijana T Ivancevic
Hardcover
R6,024
Discovery Miles 60 240
Mobilizing the Information Society…
Robin Mansell, W.Edward Steinmueller
Hardcover
R7,045
Discovery Miles 70 450
Maps Of Meaning - The Architecture Of…
Jordan B. Peterson
Paperback
![]()
|