![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
This NATO-ASIinstallment is designed to provide an advanced overview for doctoral and post-doctoral candidates of the state-of-the-art technologies for bio-detection. The main objective of the work aims at providingreaders with the latest developments necessary to successfully understand the CBRN Agents and their associated biotechnologies. The core methods focused on aremass spectrometry (including chromatographic and electrophoretic separation) and comparisons to spectroscopic, immunological and molecular analysis of chemical, biological and nuclear agents."
In recent times, the use of composites and functionally graded materials (FGMs) in structural applications has increased. FGMs allow the user to design materials for a specified functionality and therefore have numerous uses in structural engineering. However, the behaviour of these structures under high-impact loading is not well understood. Spectral Finite Element Method: Wave Propagation, Health Monitoring and Control in Composite and Functionally Graded Structures focuses on some of the wave propagation and transient dynamics problems with this complex media which had previously been thought unmanageable. By using state-off-the-art computational power, the Spectral Finite Element Method (SFEM) can solve many practical engineering problems. This book is the first to apply SFEM to inhomogeneous and anisotropic structures in a unified and systematic manner. The authors discuss the different types of SFEM for regular and damaged 1-D and 2-D waveguides, various solution techniques, different methods of detecting the presence of damages and their locations, and different methods available to actively control the wave propagation responses. The theory is supported by tables, figures and graphs; all the numerical examples are so designed to bring out the essential wave behaviour in these complex structures. Some case studies based on real-world problems are also presented. This book is intended for senior undergraduate students and graduate students studying wave propagation in structures, smart structures, spectral finite element method and structural health monitoring. Readers will gain a complete understanding of how to formulate a spectral finite element; learn about wavebehaviour in inhomogeneous and anisotropic media; and, discover how to design some diagnostic tools for monitoring the health or integrity of a structure. This important contribution to the engineering mechanics research community will also be of value to researchers and practicing engineers in structural integrity.
The current volume in the series "Vibrational Spectra and Structure" is a single topic volume on the vibrational spectra of molecules containing silicon in the solid state. "Molecular Approaches to Solids" has been treated by the workers in the Institute for Silicate Chemistry of the Russian Academy of Science in St. Petersburg for the past two decades. In the last 15 years, a number of publications have originated from the laboratory where quantum mechanical computations for suitably selected molecules have been utilized to explain the origins of some structure bonding interrelationships and silicates and to evaluate their force constants. Since most of the developments in this area have been published in the Russian literature they remain relatively inaccessible to the Western scientists. This volume is a compilation of many of these publications and summarizes the essential conclusions of these studies. Unfortunately, Professor Lazarev passed away after he had
submitted the volume for publication.
This book mainly focuses on the study of the high-temperature superconductor Bi2Sr2CaCu2O8+ (Bi2212) and single-layer FeSe film grown on SrTiO3 (STO) substrate by means of angle-resolved photoemission spectroscopy (ARPES). It provides the first electronic evidence for the origin of the anomalous high-temperature superconductivity in single-layer FeSe grown on SrTiO3 substrate. Two coexisted sharp-mode couplings have been identified in superconducting Bi2212. The first ARPES study on single-layer FeSe/STO films has provided key insights into the electronic origin of superconductivity in this system. A phase diagram and electronic indication of high Tc and insulator to superconductor crossover have been established in the single-layer FeSe/STO films. Readers will find essential information on the techniques used and interesting physical phenomena observed by ARPES.
This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics. Written for: Scientists, optical engineers and graduate students
This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers' understanding of future trends in non-volatile memories.
Using a novel approach that combines high temporal resolution of the laser T-jump technique with unique sets of fluorescent probes, this study unveils previously unresolved DNA dynamics during search and recognition by an architectural DNA bending protein and two DNA damage recognition proteins. Many cellular processes involve special proteins that bind to specific DNA sites with high affinity. How these proteins recognize their sites while rapidly searching amidst ~3 billion nonspecific sites in genomic DNA remains an outstanding puzzle. Structural studies show that proteins severely deform DNA at specific sites and indicate that DNA deformability is a key factor in site-specific recognition. However, the dynamics of DNA deformations have been difficult to capture, thus obscuring our understanding of recognition mechanisms. The experiments presented in this thesis uncover, for the first time, rapid (~100-500 microseconds) DNA unwinding/bending attributed to nonspecific interrogation, prior to slower (~5-50 milliseconds) DNA kinking/bending/nucleotide-flipping during recognition. These results help illuminate how a searching protein interrogates DNA deformability and eventually "stumbles" upon its target site. Submillisecond interrogation may promote preferential stalling of the rapidly scanning protein at cognate sites, thus enabling site-recognition. Such multi-step search-interrogation-recognition processes through dynamic conformational changes may well be common to the recognition mechanisms for diverse DNA-binding proteins.
Gas chromatography mass spectrometry (GC-MS) has been the technique of choice of analytical scientists for many years. The latest developments in instrumentation, including tandem mass spectrometry (MS-MS) and time-of-flight (TOF) detectors, have opened up and broadened the scope of environmental analytical chemistry. This book summarizes the major advances and relevant applications of GC-MS techniques over the last 10 years, with chapters by leading authors in the field of environmental chemistry. The authors are drawn from academia, industry and government. The book is organized in three main parts. Part I covers
applications of basic GC-MS to solve environmental-related
problems. Part II focuses on GC-MS-MS instrumentation for the
analyses of a broad range of analysis in environmental samples
(pesticides, persistent organic pollutants, endocrine disruptors,
etc.). Part III covers the use of more advanced GC-MS techniques
using low- and high-resolution mass spectrometry for many
applications related to the environment, food and industry.
In this book, the author theoretically studies two aspects of topological states. First, novel states arising from hybridizing surface states of topological insulators are theoretically introduced. As a remarkable example, the author shows the existence of gapless interface states at the interface between two different topological insulators, which belong to the same topological phase. While such interface states are usually gapped due to hybridization, the author proves that the interface states are in fact gapless when the two topological insulators have opposite chiralities. This is the first time that gapless topological novel interface states protected by mirror symmetry have been proposed. Second, the author studies the Weyl semimetal phase in thin topological insulators subjected to a magnetic field. This Weyl semimetal phase possesses edge states showing abnormal dispersion, which is not observed without mirror symmetry. The author explains that the edge states gain a finite velocity by a particular form of inversion symmetry breaking, which makes it possible to observe the phenomenon by means of electric conductivity.
This monograph solely investigates the Debye Screening Length (DSL) in semiconductors and their nano-structures. The materials considered are quantized structures of non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V and Bismuth Telluride respectively. The DSL in opto-electronic materials and their quantum confined counterparts is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestions for the experimental determination of 2D and 3D DSL and the importance of measurement of band gap in optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring photon induced physical properties) have also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the DSL and the DSL in heavily doped semiconductors and their nanostructures has been investigated. This monograph contains 150 open research problems which form the integral part of the text and are useful for both PhD students and researchers in the fields of solid-state sciences, materials science, nano-science and technology and allied fields in addition to the graduate courses in modern semiconductor nanostructures.
Mass spectrometry (MS) offers unmatched capabilities for the detection, characterization, and identification of a broad range of analytes. Mass spectrometry imaging (MSI) integrates MS data with information on the spatial distributions of the analytes, further enhancing the applicability of MS. In Mass Spectrometry Imaging: Principles and Protocols, expert practitioners from academia, industry, and the clinic contribute cutting-edge protocols describing the application of MSI to investigations of analyte localization in a variety of specimens, from microorganisms to plant and animal tissues. Divided into three sections, this volume presents the principles of MS, current and future trends of MSI, and qualitative and quantitative protocols to measure and identify endogenous metabolites and xenobiotics. An array of MSI approaches and technologies for characterizing peptide and protein distributions are described in detail. Written in the highly successful Methods in Molecular Biology (TM) series format, protocol chapters include introductions to their respective topics, lists of the necessary materials and reagents, and step-by-step, readily reproducible laboratory procedures. Also included are notes providing tips to avoid experimental pitfalls and helpful suggestions for method troubleshooting. Comprehensive and up-to-date, Mass Spectrometry Imaging: Principles and Protocols is written for scientists, biological and chemical engineers, and clinicians who are interested in applying MSI in their work and those who would benefit from having detailed experimental guidelines available in a single, convenient source.
The development of linear-scaling density functional theory (LS-DFT) has made ab initio calculations on systems containing thousands of atoms possible. These systems range from nanostructures to biomolecules. These methods rely on the use of localized basis sets, which are optimised for the representation of occupied Kohn-Sham states but do not guarantee an accurate representation of the unoccupied states. This is problematic if one wishes to combine the power of LS-DFT with that of theoretical spectroscopy, which provides a direct link between simulation and experiment. In this work a new method is presented for optimizing localized functions to accurately represent the unoccupied states, thus allowing theoretical spectroscopy of large systems. Results are presented for optical absorption spectra calculated using the ONETEP code, but the method is equally applicable to other spectroscopies and LS formulations. Other topics covered include a study of some simple one dimensional basis sets and the presentation of two methods for band structure calculation using localized basis sets, both of which have important implications for the use of localized basis sets within LS-DFT.
This book introduces the basic theoretical concepts required for the analysis of the optical response of semiconductor systems in the coherent regime. It is the most instructive textbook on the theory and optical effects of semiconductors. The entire presentation is based on a one-dimensional tight-binding model. Starting with discrete-level systems, increasing complexity is added gradually to the model by including band-structure and many-particle interaction. Various linear and nonlinear optical spectra and temporal phenomena are studied. The analysis of many-body effects in nonlinear optical phenomena covers a major part of the book.
Following the long-standing tradition of the Seeheim-Workshops on M
ssbauer Spectroscopy, 1978, 1983, 1988, 1994 always held in the
same traditional place of the Lufthansa Training Center in
Seeheim/Germany, the 5th workshop took place in 2002. The main
topics covered are:
Volume 7 continues the tradition of previous volumes in this series
by presenting cutting-edge and current advances in atomic
spectroscopy. This volume focuses on the application of atomic
spectroscopy particularly ICPMS, with an emphasis in the area of
clinical and biological samples
This thesis presents the first direct observations of the 3D-shape, size and electrical properties of nanoscale filaments, made possible by a new Scanning Probe Microscopy-based tomography technique referred to as scalpel SPM. Using this innovative technology and nm-scale observations, the author achieves essential insights into the filament formation mechanisms, improves the understanding required for device optimization, and experimentally observes phenomena that had previously been only theoretically proposed.
This book brings together a number of studies which examine the ways in which the retention and selectivity of separations in high-performance liquid chromatography are dependent on the chemical structure of the analytes and the properties of the stationary and mobile phases. Although previous authors have described the optimisation of separations by alteration of the mobile phase, little emphasis has previously been reported of the influence of the structure and properties of the analyte. The initial chapters describe methods based on retention index group increments and log P increments for the prediction of the retention of analytes and the ways in which these factors are influenced by mobile phases and intramolecular interactions. The values of a wide range of group increments in different eluents are tabulated. Different scales of retention indices in liquid chromatography are described for the comparison of separations, the identification of analytes and the comparison of stationary phases. Applications of these methods in the pharmaceutical, toxicology, forensic, metabolism, environmental, food and other fields are reviewed. The effects of different mobile phases on the selectivity of the retention indices are reported. A compilation of sources of reported retention index values are given. Methods for the comparison of stationary phases based on the interactions of different analytes are covered, including lipophilic and polar indices, shape selectivity comparisons, their application to novel stationary phases, and chemometric methods for column comparisons.
This thesis provides a comprehensive description of methods used to compute the vibrational spectra of liquid systems by molecular dynamics simulations. The author systematically introduces theoretical basics and discusses the implications of approximating the atomic nuclei as classical particles. The strengths of the methodology are demonstrated through several different examples. Of particular interest are ionic liquids, since their properties are governed by strong and diverse intermolecular interactions in the liquid state. As a novel contribution to the field, the author presents an alternative route toward infrared and Raman intensities on the basis of a Voronoi tessellation of the electron density. This technique is superior to existing approaches regarding the computational resources needed. Moreover, this book presents an innovative approach to obtaining the magnetic moments and vibrational circular dichroism spectra of liquids, and demonstrates its excellent agreement with experimental reference data.
The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialists view from different domains to the forthcoming "single-photon imaging" revolution. The various aspects of single-photon imaging are treated by internationally renowned, leading scientists and technologists who have all pioneered their respective fields.
This thesis describes longitudinal nuclear relaxation measurements of solid 129Xe near 77 K with previously unattainable reproducibility, and demonstrates differences in relaxation, dependent upon the way in which the solid is condensed. These results are directly applicable to the generation and storage of large quantities of hyperpolarized 129Xe for various applications, such as lung magnetic resonance imaging (MRI). The thesis features a sophisticated theoretical approach to these data sets, including modifications to a well-established Raman-phonon scattering theory that may explain the larger scatter in and discrepancies with previous work.
What drives a scientist to edit a book on a speci c scienti c subject such as chiral mechanisms in separation methods? Until December 2005, the journal Analytical Chemistry of the American Chemical Society (Washington, DC) had an A-page section that was dedicated to simple and clear presentations of the most recent te- niques or the state of the art in a particular eld or topic. The "A-page" section was prepared for a broad audience of chemists including industrial professionals, s- dents as well as academics looking for information outside their eld of expertise. 1 Daniel W. Armstrong, one of the editors of this journal and a twenty-year+ long friend, invited me to present my view on chiral recognition mechanisms in a simple and clear way in an "A-page" article. In 2006, the "A-page" section was maintained as the rst articles at the beginning of each rst bi-monthly issue but the pagination was no longer page distinguished from the regular research articles published by the journal. During the time between the invitation and the submission, the A-page section was integrated into the rest of the journal and the article appeared as (2006) Anal Chem (78):2093-2099.
The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for any other researcher in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
This Springer Laboratory volume introduces the reader to advanced techniques for the separation and fractionation of polyolefins. It includes detailed information on experimental protocols and procedures, addressing the experimental background of different polyolefin fractionation techniques in great detail. The book summarizes important applications in all major fractionation methods with emphasis on multidimensional analytical approaches. It comprises the most powerful modern techniques, such as high temperature size exclusion chromatography (HT-SEC) for molar mass analysis, temperature rising elution fractionation (TREF) and crystallization analysis fractionation (CRYSTAF) for the analysis of chemical composition and branching, high temperature two-dimensional liquid chromatography (HT-2D-LC), solvent and temperature gradient interaction chromatography (SGIC and TGIC) and crystallization elution fractionation (CEF). Beginners as well as experienced chromatographers will benefit from this concise introduction to a great variety in instrumentation, separation procedures and applications. With detailed descriptions of experimental approaches for the analysis of complex polyolefins, the readers are offered a toolbox to solve simple as well as sophisticated separation tasks. The book starts with an introduction into the molecular complexity of polyolefins - the most widely used synthetic polymers with rapidly growing production capacities. It systematically discusses crystallization based fractionation techniques including TREF, CRYSTAF and CEF and column chromatographic techniques for molar mass, chemical composition and microstructure, as well as the combination of different fractionations in multidimensional experimental setups. This book also includes basic information on the application of high-temperature field-flow fractionation. |
You may like...
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R59,229
Discovery Miles 592 290
Advances in the Use of Liquid…
Achille Cappiello, Pierangela Palma
Hardcover
R6,341
Discovery Miles 63 410
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R5,483
Discovery Miles 54 830
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,294
Discovery Miles 52 940
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
|