![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes." For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This book discusses the theoretical foundations of the structural modeling method applied to metamaterials. This method takes into account the parameters of the crystal lattice, the size of the medium particles, as well as their shape and constants of force interactions between them. It provides mathematical models of metamaterials that offer insights into the qualitative influence of the local structure on the effective elastic moduli of the considered medium and into performing theoretical estimations of these quantities. This book is useful for researchers working in the fields of solid mechanics, physical acoustics, and condensed matter physics, as well as for graduate and postgraduate students studying mathematical modeling methods.
Atomic Absorption Spectroscopy (AAS) is a well-established elemental analysis technology. It remains one of the most popular and cost-effective analysis tools used by chemists, physicists, and materials scientists worldwide. This second edition offers a concise introduction to AAS concepts, essential methodologies, and important applications. It has been comprehensively updated for the latest advances in AAS techniques and instruments. Highlights include: - Overviews of all basic atomic absorption concepts, including atomic line spectra theory, common sampling techniques, radiation sources, spectrometers, and detectors; - Coverage of hydride generation, cold vapor generation and electrothermal generation, as well as flow injection analysis (FIA) to enhance AAS analytical performance; - New sections on troubleshooting and quality control guidelines, chemometrics, and emerging fields of applications, including analysis of nanoparticles; and - Selected examples of standards for chemical analysis.
"Mulilayer Integrated Film Bulk Acoustic Resonators" mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang s research group."
The field of protein NMR spectroscopy has rapidly expanded into new areas of biochemistry, molecular biology and cell biology research that were impossible to study as recently as ten years ago. This third edition of Protein NMR Techniques, expands upon the previous editions with current, detailed authoritative but down-to-earth descriptions of new methodologies. These include techniques for NMR sample preparation, solution and solid state NMR methodologies and data processing. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Protein NMR Techniques,Third Edition, seeks to aid scientists in understanding the latest innovations in the field of protein NMR.
"Photoelectrochemical Hydrogen Production" describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.
This thesis identifies the turning point in chain length, after which alkanes self-solvate into a folded structure instead of an extended stretched conformation. After this turning point, London dispersion forces rearrange isolated n-alkanes into a particular hairpin-structure, while for shorter chain lengths, a simple stretched conformation is energetically preferred. This thesis can locate the experimental turning point for the first time in an interaction-free manner from measurements of unbranched alkanes at low temperatures in supersonic jet expansions. It contains a detailed analysis of the vibrational Raman spectra of the chain molecules, which is supported by comprehensive quantum chemical simulations. In this way, the detailed balance between inter-chain attraction and conformational flexibility can be quantified. The investigations are complemented by measurements of perfluoroalkanes and similarities and differences between the compounds are discussed. Furthermore, Nils Luttschwager determines the stiffnesses (elastic moduli) of two of the most common industrial polymers: polyethylene and polytetrafluorethylene. He uses in this thesis a sophisticated extrapolation to calculate this value from quantities of their building blocks, showing that the single polymer molecules can be as stiff as a rod of steel.
Fluorescence spectroscopy is a type of electromagnetic
spectroscopy, using a beam of light, which analyzes fluorescence
from a sample. Given its extremely high sensitivity and
selectivity, it is an important investigational tool in many areas
including material sciences, analytical sciences, and across a
broad range of chemical, biochemical and medical research. It has
become an essential investigational technique allowing detailed,
real-time observation of the structure and dynamics of intact
biological systems. The pharmaceutical industry uses it heavily and
it has become a dominating technique in biochemistry and molecular
genetics.
This book presents an Ultrafast Low-Energy Electron Diffraction (ULEED) system that reveals ultrafast structural changes on the atomic scale. The achievable temporal resolution in the low-energy regime is improved by several orders of magnitude and has enabled the melting of a highly-sensitive, molecularly thin layer of a polymer crystal to be resolved for the first time. This new experimental approach permits time-resolved structural investigations of systems that were previously partially or totally inaccessible, including surfaces, interfaces and atomically thin films. It will be of fundamental importance for understanding the properties of nanomaterials so as to tailor their properties.
The role of laboratory research and simulations in advancing our understanding of solar system ices (including satellites, KBOs, comets, and giant planets) is becoming increasingly important. Understanding ice surface radiation processing, particle and radiation penetration depths, surface and subsurface chemistry, morphology, phases, density, conductivity, etc., are only a few examples of the inventory of issues that are being addressed by Earth-based laboratory research. As a response to the growing need for cross-disciplinary dialog and communication in the Planetary Ices science community, this book aims to achieve direct dialog and foster focused collaborations among the observational, modeling, and laboratory research communities.
This book, written by a pioneer in surface physics and thin film research and the inventor of Low Energy Electron Microscopy (LEEM), Spin-Polarized Low Energy Electron Microscopy (SPLEEM) and Spectroscopic Photo Emission and Low Energy Electron Microscopy (SPELEEM), covers these and other techniques for the imaging of surfaces with low energy (slow) electrons. These techniques include Photoemission Electron Microscopy (PEEM), X-ray Photoemission Electron Microscopy (XPEEM), and their combination with microdiffraction and microspectroscopy, all of which use cathode lenses and slow electrons. Of particular interest are the fundamentals and applications of LEEM, PEEM, and XPEEM because of their widespread use. Numerous illustrations will illuminate the fundamental aspects of the electron optics, the experimental setup, and particularly the application results with these instruments. Surface Microscopy with Low Energy Electrons will give the reader a unified picture of the imaging, diffraction, and spectroscopy methods that are possible using low energy electron microscopes.
This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gaspari-Gyorffy theories and a tabulation of the electron-ion interaction matrix elements. The evaluation of the Stoner criterion for ferromagnetism is examined and results are tabulated. This edition also contains two new appendices discussing the effects of spin-orbit interaction and a modified version of Harrison's tight-binding theory for metals which puts the theory on a quantitative basis.
This book surveys recent advances related to the application of single molecule techniques in various fields of science. The topics, each described by leading experts in the field, range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics. A unifying theme of all chapters is the power of single molecule techniques to unravel fluctuations and heterogeneities usually hidden in the ensemble average of complex systems. The concept for the book originated from a gathering of some of the world's leading scientists at the Nobel Conference in Sweden.
Much of what we know about atoms, molecules, and the nature of
matter has been obtained using spectroscopy over the last one
hundred years or so. In this book we have collected together twenty
chapters by eminent scientists from around the world to describe
their work at the cutting edge of molecular spectroscopy. These
chapters describe new methodology and applications, instrumental
developments, and theory which is taking spectroscopy into new
frontiers. The range of topics is broad. Lasers are utilized in
much of the research, but their applications range from
sub-femtosecond spectroscopy to the study of viruses and also to
the investigation of art and archeological artifacts. Three
chapters discuss work on biological systems and three others
represent laser physics. The recent advances in cavity ringdown
spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS),
two-dimensional correlation spectroscopy (2D-COS), and microwave
techniques are all covered. Chapters on electronic excited states,
molecular dynamics, symmetry applications, and neutron scattering
are also included and demonstrate the wide utility of spectroscopic
techniques.
This book is designed to be a central text for young graduate
students interested in mass spectrometry as it relates to study of
protein structure and function as well as proteomics.
In this thesis single-molecule fluorescence resonance energy transfer (FRET) spectroscopy was used to study the folding of a protein that belongs to the large and important family of repeat proteins. Cohen shows that the dynamics of the expanded conformations is likely to be very fast, suggesting a spring-like motion of the whole chain. The findings shed new light on the elasticity of structure in repeat proteins, which is related to their function in binding multiple and disparate partners. This concise research summary provides useful insights for students beginning a PhD in this or a related area, and researchers entering this field.
This thesis combines quantum electrical engineering with electron spin resonance, with an emphasis on unraveling emerging collective spin phenomena. The presented experiments, with first demonstrations of the cavity protection effect, spectral hole burning and bistability in microwave photonics, cover new ground in the field of hybrid quantum systems. The thesis starts at a basic level, explaining the nature of collective effects in great detail. It develops the concept of Dicke states spin-by-spin, and introduces it to circuit quantum electrodynamics (QED), applying it to a strongly coupled hybrid quantum system studied in a broad regime of several different scenarios. It also provides experimental demonstrations including strong coupling, Rabi oscillations, nonlinear dynamics, the cavity protection effect, spectral hole burning, amplitude bistability and spin echo spectroscopy.
This edition contains carefully selected contributions by leading scientists in high-resolution laser spectroscopy, quantum optics and laser physics. Emphasis is given to ultrafast laser phenomena, implementations of frequency combs, precision spectroscopy and high resolution metrology. Furthermore, applications of the fundamentals of quantum mechanics are widely covered. This book is dedicated to Nobel prize winner Theodor W. Hansch on the occasion of his 75th birthday. The contributions are reprinted from a topical collection published in Applied Physics B, 2016. Selected contributions are available open access under a CC BY 4.0 license via link.springer.com. Please see the copyright page for further details.
"...a comprehensive and well written book, which...will be useful reading for both researchers entering the field and experienced specialists looking for new ideas....a valuable and long-lasting contribution to experimental mechanics." - Stepan Lomov, KU Leuven This expert volume, an enhanced Habilitation thesis by the head of the Materials Testing Research Group at the University of Augsburg, provides detailed coverage of a range of inspection methods for insitu characterization of fiber-reinforced composites. The failure behavior of fiber reinforced composites is a complex evolution of microscopic damage phenomena. Beyond the use of classical testing methods, the ability to monitor the progression of damage insitu offers new ways to interpret the materials failure modes. Methods covered include digital image correlation, acoustic emission, electromagnetic emission, computed tomography, thermography, shearography, and promising method combinations. For each method, the discussion includes operational principles and practical applications for quality control as well as thoughtful assessment of the method's strengths and weakness so that the reader is equipped to decide which method or methods are most appropriate in a given situation. The book includes extensive appendices covering common experimental parameters influencing comparability of acoustic emission measurements; materials properties for modeling; and an overview of terms and abbreviations.
Structure and Dynamics of Macromolecules: Absorption and
Fluorescence Studies is clearly written and contains invaluable
examples, coupled with illustrations that demonstrate a
comprehensible analysis and presentation of the data. This book
offers practical information on the fundamentals of absorption and
fluorescence, showing that it is possible to interpret the same
result in different ways. It is an asset to students, professors
and researchers wishing to discover or use absorption and
fluorescence spectroscopy, and to scientists working on the
structure and dynamics of macromolecules.
X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-situ measurements of the effects of temperature and pressure. Summarizing research in their respective fields, the authors highlight important experimental findings and demonstrate the capabilities and applications of the XAS technique. This book provides a comprehensive review and valuable reference guide for both XAS newcomers and experts involved in semiconductor materials research.
The book covers in particular state-of-the-art scientific research about product quality control and related health and environmental safety topics, including human, animal and plant safety assurance issues. These conference proceedings provide contemporary information on the general theoretical, metrological and practical issues of the production and application of reference materials. Reference materials play an integral role in physical, chemical and related type of measurements, ensuring their uniformity, comparability and the validity of quantitative analysis as well as, as a result, the objectivity of decisions concerning the elimination of technical barriers in commercial and economic, scientific and technical and other spheres of cooperation. The book is intended for researchers and practitioners in the field of chemistry, metrologists, technical physics, as well as for specialists in analytical laboratories, or working for companies and organizations involved in the production, distribution and use of reference materials.
Nuclear Magnetic Resonance Spectroscopy (NMR) is now widely regarded as having evolved into a subscience. The field has become immensely diverse, ranging from medical use through solid state NMR to liquid state applications, with countless books and scientific journals devoted to these topics. Theoretical as well as experimental advance continues to be rapid, and has in fact accelerated by many novel innovations. This multi-authored book focuses on the latest developments in the rapidly evolving field of high resolution NMR, specifically with a view to applications on the structure elucidation of organic molecules of moderate molecular weight. Conceptually it differs from basic educational texts, hard-core scientific papers and regular review articles in that each chapter may be regarded as the authors' personal account of their special insights and results that crystallised after several years of research into a given topic. The book revolves around several themes and offers a handful of scientific "gems" of various colors, reflecting the great diversity of NMR. It contains 16 loosely connected chapters written by some of today's most accomplished NMR scientists in the world. Each chapter is a unique synthesis of the authors' previous research results in the given field, and thus projects special insights. Much emphasis has been given to the latest developments in NMR, in particular to selective pulses and pulsed field gradients. As a part of the series "Analytical Spectroscopy Library," with subsequent editions coming along this book should provide a platform for future research accounts of similar flavor. The material is presented in a mostly non-mathematical fashion, and is intended mainly for chemists, application NMR scientists and students with already some background in NMR. Some of the chapters slightly overlap in the discussed topics, which is particularly exciting in terms of gaining insight into the same area from different angles.
Micro-X-ray fluorescence offers the possibility for a position- sensitive and non-destructive analysis that can be used for the analysis of non-homogeneous materials and layer systems. This analytical technique has shown a dynamic development in the last 15 years and is used for the analysis of small particles, inclusions, of elemental distributions for a wide range of different applications both in research and quality control. The first experiments were performed on synchrotrons but there is a requirement for laboratory instruments which offers a fast and immediate access for analytical results. The book discuss the main components of a -XRF instrument and the different measurement modes, it gives an overview about the various instruments types, considers the special requirements for quantification of non-homogeneous materials and presents a wide range of application for single point and multi-point analysis as well as for distribution analysis in one, two and three dimensions.
This book represents volume 2 of a 3-volume monograph on Particle Penetration and Radiation Effects. While volume 1 addressed the basic theory of scattering and stopping of swift point charges, i.e., protons, antiprotons and alpha particles, the present volume focuses on ions heavier than helium as well as molecules and clusters over an energy range from a few keV/u to a few hundred MeV/u. The book addresses the foundations in atomic-collision physics of a wide variety of application areas within materials and surface science and engineering, micro and nano science and technology, radiation medicine and biology as well as nuclear and particle physics. Problems have been added to all chapters. This should make the book useful for both self-study and advanced university courses. An effort has been made to establish a unified notation throughout the monograph. |
![]() ![]() You may like...
Poetic Inquiry For The Human And Social…
Heidi van Rooyen, Kathleen Pithouse-Morgan
Paperback
The Distance Learning Playbook for…
Rosalind Wiseman, Douglas Fisher, …
Paperback
R610
Discovery Miles 6 100
|