![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry
Discover the principles and practices behind analytical chemistry as you study its applications in medicine, industry and the sciences with FUNDAMENTALS OF ANALYTICAL CHEMISTRY, 10th Edition. This award-winning author team presents the latest developments in analytical chemistry today using a reader-friendly yet systematic and thorough approach. Each chapter begins with a compelling story and stunning visuals. Dynamic photos from renowned chemistry photographer Charlie Winters capture attention while reinforcing key principles. New features highlight chemistry-related careers. You also learn how to use Excel 2019 as a problem-solving tool in analytical chemistry with new exercises, examples and a no-cost supplement by the text authors. OWLv2 online homework tool is also available to help you master the principles of analytical chemistry today.
Comprehensive Glycoscience, Second Edition, Five Volume Set assembles the top minds in this area who provide an update on the renowned 2007 first edition, including new discoveries and latest advances in glycoscience-related research areas such as glycan microarrays, carbohydrate materials, glycoengineering and microbiome research. The result is an up-to-date work which will impress readers with the many new advances that are outlined and taught in this second edition. Most areas of the original edition have been majorly updated, some overlapping topics have been consolidated, and several topics have been rearranged into more appropriate sections.
Annual Reports in Computational Chemistry, Volume 14, provides timely and critical reviews of important topics in computational chemistry. Topics covered in this series include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists.
The Handbook of Metabolic Phenotyping is the definitive work on the rapidly developing subject of metabolic phenotyping. It explores in detail the wide array of analytical chemistry and statistical modeling techniques used in the field, coupled with surveys of the various application areas in human development, nutrition, disease, therapy, and epidemiology to create a comprehensive exploration of the area of study. It covers recent studies that integrate the various -omics data sets to derive a systems biology view. It also addresses current issues on standardization, assay and statistics validation, and data storage and sharing. Written by experts with many years of practice in the field who pioneered many of the approaches widely used today, The Handbook of Metabolic Phenotyping is a valuable resource for postgrads and research scientists studying and furthering the field of metabolomics.
Data Analysis for Omic Sciences: Methods and Applications, Volume 82, shows how these types of challenging datasets can be analyzed. Examples of applications in real environmental, clinical and food analysis cases help readers disseminate these approaches. Chapters of note include an Introduction to Data Analysis Relevance in the Omics Era, Omics Experimental Design and Data Acquisition, Microarrays Data, Analysis of High-Throughput RNA Sequencing Data, Analysis of High-Throughput DNA Bisulfite Sequencing Data, Data Quality Assessment in Untargeted LC-MS Metabolomic, Data Normalization and Scaling, Metabolomics Data Preprocessing, and more.
Annual Reports on NMR Spectroscopy, Volume 95, provides an in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications. In recent years, no other technique has gained as much significance. It is used in all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. This book has established itself as a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications pertaining to NMR spectroscopy.
Characterizing the Alteration of Ovoproducts Using New Analytical Approaches focuses on the capabilities (potential or proven) of the latest metabolomics based analytical approaches for the (early) diagnostic of the alteration of ovoproducts during their production/preservation processes. It details the ovoproduct matrix, their known sources of biotic and abiotic alteration, and their associated biomarkers. In addition, the book covers the capabilities (exploratory and characterization) of the latest metabolomics tecnics, both invasive and non-invasive, including chromatography, nuclear magnetic resonance, mass spectrometry, NMR, MS - including FTICR-MS -, and vibrational spectroscopy, such as Infrared - MIR, NIR - or Raman). In final sections, the next generation of online sensors derived from the latest technics is discussed for their applicative potential in industry (NIR, Raman, chromatography, benchmark NMR, and more).
The identification and quantification of the widespread occurrence of trace organic chemicals at minute concentrations in the aqueous environment impacted by human activities is a result of rapid advances in environmental analytical chemistry. The body of knowledge regarding the characterization, fate and transport of these chemicals of emerging concern (CECs) in the natural water environment and engineered water treatment processes, as well as their toxicity, has grown substantially over the last two decades. Recently, the focus in the environmental chemistry community has shifted from these CEC parent compounds to the fate, transport, and toxicity of transformation products, which are generated through abiotic and biotic mechanisms in natural systems and during engineered advanced water treatment processes. This two-part book focuses on the studies and recent advancements towards the development of more harmonized strategies and workflows using non-target and suspects screening methods, including suitable bioassay approaches to assess the overall relevance of transformation products. Volume I covers the relevance of transformation products and international strategies to manage CECs, new methods for a comprehensive assessment of transformation products, and the fate and transport of transformation products in natural systems. This book is ideal for environmental scientists and engineers, particularly chemists, environmental engineers, public health officials, regulators, other chemistry-related professionals, and students.
Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications, Volume Six, Second Edition, presents the latest in a series that has been well received by the thermal analysis and calorimetry community. This volume covers recent advances in techniques and applications that complement the earlier volumes. There has been tremendous progress in the field in recent years, and this book puts together the most high-impact topics selected for their popularity by new editors Sergey Vyazovkin, Nobuyoshi Koga and Christoph Schick-all editors of Thermochimica Acta. Among the important new techniques covered are biomass conversion; sustainable polymers; polymer nanocompsoties; nonmetallic glasses; phase change materials; propellants and explosives; applications to pharmaceuticals; processes in ceramics, metals, and alloys; ionic liquids; fast-scanning calorimetry, and more.
Advances in the Use of Liquid Chromatography Mass Spectrometry (LC-MS): Instrumentation Developments and Application, Volume 79, highlights the most recent LC-MS evolutions through a series of contributions by world renowned scientists that will lead the readers through the most recent innovations in the field and their possible applications. Many authoritative books on LC-MS are already present in market, describing in detail the different interfaces and their principles of operation. This book focuses more on new trends, starting with the innovations of each technique, to the most progressive challenges of LC-MS.
Annual Reports on NMR Spectroscopy, Volume 91 provides a thorough and in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications for chemists and physicists to study the structure and dynamics of molecules. This updated release in the series focuses on topics surrounding NMR relaxation in dendrimers, MRI studies of spatial distribution of charge carriers, and MRI studies of plastic crystals, amongst other timely topics. As no other technique has gained as much significance as NMR spectroscopy in recent years, this series, for both specialists and non-specialists, is an ideal resource for the latest information in the field.
Electrochemistry of Dihydroxybenzene Compounds: Electrochemistry of Dihydroxybenzene Compounds focuses on developing a simple, highly sensitive and accurate voltammetric method to assess diphenols and other chemical compounds using composite-modified and glassy carbon-based electrodes. The determination of the trace levels of chemicals in products is a fundamental challenge in chemistry research, education and industry. This book presents significant approaches to this challenge, including the application of a wide range of electrodes under easily controlled conditions. Practical and concise, the book is an accessible quick reference for chemists and pharmacologists for assessing the electrochemistry of D-compounds.
This third edition of the Encyclopedia of Spectroscopy and Spectrometry, Three Volume Set provides authoritative and comprehensive coverage of all aspects of spectroscopy and closely related subjects that use the same fundamental principles, including mass spectrometry, imaging techniques and applications. It includes the history, theoretical background, details of instrumentation and technology, and current applications of the key areas of spectroscopy. The new edition will include over 80 new articles across the field. These will complement those from the previous edition, which have been brought up-to-date to reflect the latest trends in the field. Coverage in the third edition includes: Atomic spectroscopy Electronic spectroscopy Fundamentals in spectroscopy High-Energy spectroscopy Magnetic resonance Mass spectrometry Spatially-resolved spectroscopic analysis Vibrational, rotational and Raman spectroscopies The new edition is aimed at professional scientists seeking to familiarize themselves with particular topics quickly and easily. This major reference work continues to be clear and accessible and focus on the fundamental principles, techniques and applications of spectroscopy and spectrometry.
This book covers the progress of the last 10 years of studies on cocoa butter. Descriptions of several aspects, including physical characteristics such as rheology, hardness, melt profiles, etc., studied by new and advanced techniques are included. Similarly, the polymorphism of cocoa butter is reconsidered in light of studies done by synchrotron DSC, FTIR, and SAXS techniques. These data are complemented by new understandings on the cause of the crystallization and transitions of the polymorphs. Other aspects such as the effect of minor components, emulsifiers, and other fats are discussed in great detail in this book.
This volume is an essential handbook for anyone interested in performing the most accurate spectrophotometric or other optical property of materials measurements. The chapter authors were chosen from the leading experts in their respective fields and provide their wisdom and experience in measurements of reflectance, transmittance, absorptance, emittance, diffuse scattering, color, and fluorescence. The book provides the reader with the theoretical underpinning to the methods, the practical issues encountered in real measurements, and numerous examples of important applications. Written by the leading international experts from industry, government, and academiaWritten as a handbook, with in depth discussion of the topicsFocus on making the most accurate and reproducible measurementsMany practical applications and examples
The second edition of "Internal Photoemission Spectroscopy" thoroughly updates this vital, practical guide to internal photoemission (IPE) phenomena and measurements. The book's discussion of fundamental physical and technical aspects of IPE spectroscopic applications is supplemented by an extended overview of recent experimental results in swiftly advancing research fields. These include the development of insulating materials for advanced SiMOS technology, metal gate materials, development of heterostructures based on high-mobility semiconductors, and more. Recent results concerning the band structure of important interfaces in novel materials are covered as well. Internal photoemission involves the physics of charge carrier
photoemission from one solid to another, and different
spectroscopic applications of this phenomenon to solid state
heterojunctions. This technique complements conventional external
photoemission spectroscopy by analyzing interfaces separated from
the sample surface by a layer of a different solid or liquid.
Internal photoemission provides the most straightforward, reliable
information regarding the energy spectrum of electron states at
interfaces. At the same time, the method enables the analysis of
heterostructures relevant to modern micro- and nano-electronic
devices as well as new materials involved in their design and
fabrication.
Even the most cursory survey of the chemical literature reveals that modern NMR spectroscopy has indeed fulfilled its potential as a powerful and indispensable tool for probing molecular structure, providing detail that is comparable to, and sometimes surpasses that, of X-ray crystallography. As NMR spectroscopy's 70th anniversary approaches, the diversity of chemical problems to which this technique can be applied continues to grow across many scientific fields. Beyond the laboratory setting, the technology underlying NMR is now a widely used and critical medical diagnostic technique, Magnetic Resonance Imaging (MRI). Unfortunately, the number of applications of NMR spectroscopy across so many STEM-related fields presents significant challenges in how best to introduce this powerful technique in meaningful ways at the undergraduate level. Inspired by the development of the field, and building upon the work of previous symposia and an ACS symposium series book on this topic (3), a symposium was developed, entitled "NMR Spectroscopy in the Undergraduate Curriculum," for the 239th American Chemical Society National Meeting in San Francisco. This book brings together all of the presenters who have been successful in developing and successfully integrating NMR spectroscopy pedagogy across their undergraduate curriculums. Their knowledge and experiences will aid readers who are interested in expanding and invigorating their own curriculum.
Nuclear magnetic resonance (NMR) is an analytical tool used by
chemists and physicists to study the structure and dynamics of
molecules. In recent years, no other technique has gained such
significance as NMR spectroscopy. It is used in all branches of
science in which precise structural determination is required and
in which the nature of interactions and reactions in solution is
being studied. "Annual Reports on NMR Spectroscopy" has established
itself as a premier means for the specialist and non-specialist
alike to become familiar with new techniques and applications of
NMR spectroscopy. Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained such significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. "Annual Reports on NMR Spectroscopy" has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy.
A classic in the area of organic synthesis, " Strategies and
Tactics in Organic Synthesis" provides a forum for investigators to
discuss their approach to the science and art of organic synthesis.
Rather than a simple presentation of data or a second-hand
analysis, this book vividly demonstrates through first hand
accounts how synthesis is really done and how by discovering new
reactions, creating new designs and building molecules with atom
and step economies, the advancement of the science of organic
synthesis is providing solutions through function to create a
better world.
This title provides comprehensive coverage of modern gas
chromatography including theory, instrumentation, columns, and
applications addressing the needs of advanced students and
professional scientists in industry and government laboratories.
Chapters are written by recognized experts on each topic. Each
chapter offers a complete picture with respect to its topic so
researchers can move straight to the information they need without
reading through a lot of background information.
This book brings together the latest perspectives and ideas on teaching modern physical chemistry. It includes perspectives from experienced and well-known physical chemists, a thorough review of the education literature pertaining to physical chemistry, a thorough review of advances in undergraduate laboratory experiments from the past decade, in-depth descriptions of using computers to aid student learning, and innovative ideas for teaching the fundamentals of physical chemistry. This book will provide valuable insight and information to all teachers of physical chemistry.
Aggregation-induced emission (AIE) stands for an intriguing phenomenon in which a series of non-emissive molecules in solutions are induced to emit strongly in the aggregate or solid state. The concept of AIE was first coined by author Ben Zhong Tang in 2001, when he and his co-workers serendipitously discovered that 1-methyl-1,2,3,4,5-pentaphenylsilole was almost non-emissive in ethanol solution but became extremely bright in water-ethanol mixtures. Over the past 15 years, AIE has grown into a research field with high visibility and broad impact across both science and technology. Aggregation-Induced Emission: Materials and Applications summarizes the recent advances in AIE research, ranging from fundamentals, such as design, synthesis, and optical properties of AIE-active molecules, to mechanism studies supported by modeling and experimental investigations, and further to promising applications in the fields of energy, environment, and biology. The topics covered in Volume 2 include: AIE polymers; AIE-induced chirogenesis; Room-temperature phosphorescent AIE molecules; Liquid crystalline AIE molecules; AIE materials for energy devices; New chemo- and biosensors with AIE molecules; Cell structure and function imaging with AIE molecules; and AIE materials in drug delivery and therapy.
Nuclear magnetic resonance (NMR) is an analytical tool used by
chemists and physicists to study the structure and dynamics of
molecules. In recent years, no other technique has grown to such
importance as NMR spectroscopy. It is used in all branches of
science when precise structural determination is required and when
the nature of interactions and reactions in solution is being
studied. "Annual Reports on NMR Spectroscopy" has established
itself as a premier means for the specialist and non-specialist
alike to become familiar with new techniques and applications of
NMR spectroscopy.
Volume 6: Ionization Methods Volume 6 captures the story of molecular ionization and its phenomenal evolution that makes mass spectrometry the powerful method it is today. Chapters 1 and 2 cover fundamentals and various issues that are common to all ionization (e.g., accurate mass, isotope clusters, and derivatization). Chapters 3-9 acknowledge that some ionization methods are appropriate for gas-phase molecules and others for molecules that are in the solid or liquid states. Chapters 3-6 cover gas-phase molecules, dividing the subject into: (1) ionization of gas-phase molecules by particles (e.g., EI), (2) ionization by photons, (3) ionization by ion-molecule and molecule-molecule reactions (e.g., APCI and DART), and ionization in Strong electric fields (i.e., Electrohydrodynamic and Field Ionization/Desorption). "Ionization in a Strong Electric Field" illustrates the transition to ionization of molecules in the solid or liquid states, covered in Chapters 7-9: (1) spray methods for ionization (e.g., electrospray), (2) desorption ionization by particle bombardment (e.g., FAB), and (3) desorption by photons (e.g., MALDI). Electrospray and MALDI also lead to applications in biophysical chemistry, the theme of Chapter 10. Chapter 11 reconsiders ionization from the view of choosing an
ionization method. The range of subjects is from ionization of
organic and biomolecules to the study of microorganisms.
Volume 8: Hyphenated Methods Starting with gas chromatography-mass spectrometry (GC-MS) and continuing through GCxGC-MS, LC-MSn, and LC-NMR-MS, hyphenated methods have revolutionized chemical analysis. This volume covers that revolution in two parts. The first (Chapters 1-4) describes principles, instrumentation, and technology, and the second (Chapters 5-10) organizes major application areas in GC-MS and LC-MS. After a general introduction (Chapter 1), attention is paid to principles and instrumentation of GC-MS (Chapter 2) and LC-MS (Chapter 3). Other hyphenated methods, including online combinations of capillary electromigration methods and supercritical fluid chromatography with mass spectrometry, are in Chapter 4. Applications are then covered in the remaining chapters. The
application-oriented chapters are focused on the role of mainly
LC-MS in the pharmaceutical field (Chapter 5) and biochemical and
biotechnological applications (Chapter 10), and the application of
both GC-MS and LC-MS in relation to environmental analysis (Chapter
6), food safety and food analysis (Chapter 7), characterization of
natural products (Chapter 8), and clinical, toxicological, and
forensic analysis (Chapter 9). |
![]() ![]() You may like...
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
![]()
Einstein Equations: Physical and…
Sergio Cacciatori, Batu Guneysu, …
Hardcover
R2,926
Discovery Miles 29 260
Quantum Mechanics of Fundamental…
Marc Henneaux, Jorge Zanelli
Hardcover
R5,758
Discovery Miles 57 580
Autism Out Loud - Life With A Child On…
Kate Swenson, Carrie Cariello, …
Hardcover
Suicide by Security Blanket, and Other…
Laura M. Prager, Abigail Louise Donovan
Hardcover
R1,770
Discovery Miles 17 700
|