![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry
"Environmental Forensics for Persistent Organic Pollutants" represents the state-of-the-art in environmental forensics in relation to persistent organic pollutants (POPs). The book is a complete reference for practitioners and students, covering a range of topics from new analytical techniques to regulatory and legal status in the global community. Through case studies from leading international experts,
real-world issues - including the allocation of responsibility for
release into the environment - are resolved through the application
of advanced analytical and scientific techniques. This book
introduces and assesses the development of new techniques and
technologies to trace the source and fate of newly emerging and
classic POPs (perfluoroalkyl substances, brominated flame
retardants, organochlorine pesticides, perfluorinated chemicals,
polycyclic aromatic hydrocarbons, and polychlorinated biphenyls) in
environmental media, including atmospheric, marine, freshwater, and
urban environments.
This revised and updated edition of the well-received book by C. Klingshirn provides an introduction to and an overview of all aspects of semiconductor optics, from IR to visible and UV. It has been split into two volumes and rearranged to offer a clearer structure of the course content. Inserts on important experimental techniques as well as sections on topical research have been added to support research-oriented teaching and learning. Volume 1 provides an introduction to the linear optical properties of semiconductors. The mathematical treatment has been kept as elementary as possible to allow an intuitive approach to the understanding of results of semiconductor spectroscopy. Building on the phenomenological model of the Lorentz oscillator, the book describes the interaction of light with fundamental optical excitations in semiconductors (phonons, free carriers, excitons). It also offers a broad review of seminal research results augmented by concise descriptions of the relevant experimental techniques, e.g., Fourier transform IR spectroscopy, ellipsometry, modulation spectroscopy and spatially resolved methods, to name a few. Further, it picks up on hot topics in current research, like quantum structures, mono-layer semiconductors or Perovskites. The experimental aspects of semiconductor optics are complemented by an in-depth discussion of group theory in solid-state optics. Covering subjects ranging from physics to materials science and optoelectronics, this book provides a lively and comprehensive introduction to semiconductor optics. With over 120 problems, more than 480 figures, abstracts to each chapter, as well as boxed inserts and a detailed index, it is intended for use in graduate courses in physics and neighboring sciences like material science and electrical engineering. It is also a valuable reference resource for doctoral and advanced researchers.
This book provides a concise overview of the photophysics and spectroscopy of bio chromophore ions. The book "Photophysics of Ionic Biochromophores" summarizes important recent advances in the spectroscopy of isolated biomolecular ions in vacuo, which has within the last decade become a highly active research field. Advanced instrumental apparatus and the steady increase in more and more powerful computers have made this development possible, both for experimentalists and theoreticians. Applied techniques described here include absorption and fluorescence spectroscopy, which are excellent indicators of environmental effects and can thus shed light on the intrinsic electronic structures of ions without perturbations from e.g. water molecules, counter ions, nearby charges, and polar amino acid residues. When compared with spectra of the chromophores in their natural environment, such spectra allow to identify possible perturbations. At the same time gas-phase spectra provide important benchmarks for quantum chemistry calculations of electronically excited states. This volume focuses on biological systems from protein biochromophores, e.g. the protonated Schiff-base retinal responsible for vision, and individual aromatic amino acids to peptides and whole proteins, studied using visible, ultraviolet and vacuum ultraviolet light. Work on DNA nucleotides and strands that are amenable to mass spectrometric studies because of the negatively charged sugarphosphate backbone are also presented. DNA strands represent an example of the interplay between multiple chromophores, which is even harder to model correctly than just single chromophores due to spatially extended excited states and weak coupling terms. The experimental techniques used to measure spectra and commonly used theoretical methods are described with a discussion on limitations and advantages. The volume includes an updated status of the field and interesting future directions such as cold ion spectroscopy.
Magnetic impurities in a non-magnetic host metal have been actively explored in condensed matter physics in recent last decades. From both fundamental and applied viewpoints these systems are very interesting because they can exhibit strong electronic correlations that give rise to various fascinating phenomena beyond the single particle picture. Up to now our understanding of the underlying processes remains limited due to difficulties involved in measuring these systems on a microscopic scale. With their unique control, scanning tunneling microscopy (STM) and spectroscopy (STS) allow for the first time investigations of phenomena occurring on very small length and energy scales. Here, single magnetic iron and cobalt atoms embedded beneath a metal surface are investigated using these techniques. In particular, the transition from single impurity Kondo physics to two interacting impurities is studied in real space. This thesis contains a comprehensive description of the STM /STS technique, sub-surface impurities, as well as single- and two-impurity Kondo physics - and as such offers a valuable introduction to newcomers to the field.
This book is designed to introduce the reader to the field of NMR/MRI at very low magnetic fields, from milli-Tesla to micro-Tesla, the ultra-low field (ULF) regime. The book is focused on applications to imaging the human brain, and hardware methods primarily based upon pre-polarization methods and SQUID-based detection. The goal of the text is to provide insight and tools for the reader to better understand what applications are best served by ULF NMR/MRI approaches. A discussion of the hardware challenges, such as shielding, operation of SQUID sensors in a dynamic field environment, and pulsed magnetic field generation are presented. One goal of the text is to provide the reader a framework of understanding the approaches to estimation and mitigation of low signal-to-noise and long imaging time, which are the main challenges. Special attention is paid to the combination of MEG and ULF MRI, and the benefits and challenges presented by trying to accomplish both with the same hardware. The book discusses the origin of unique relaxation contrast at ULF, and special considerations for image artifacts and how to correct them (i.e. concomitant gradients, ghost artifacts). A general discussion of MRI, with special consideration to the challenges of imaging at ULF and unique opportunities in pulse sequences, is presented. The book also presents an overview of some of the primary applications of ULF NMR/MRI being pursued.
This volume offers 11 papers that cover the wide spectrum of influences on Rudolf Carnap's seminal work, Der Logische Aufbau der Welt (The Logical Structure of the World). Along the way, it covers a host of topics related to this important philosophical work, including logic, theories of order, science, hermeneutics, and mathematics in the Aufbau, as the work is commonly termed. The book uncovers the influences of such neglected figures as Gerhards, Driesch, Ziehen, and Ostwald. It also presents new evidence on influences of well-known figures in philosophy, including Husserl, Rickert, Schlick, and Neurath. In addition, the book offers comparisons of the Aufbau with the work of contemporary scientists such as Weyl and Wiener as well as features new archival findings on the early Carnap.This book will appeal to researchers and students with an interest in the history and philosophy of science, history of analytic philosophy, the philosophy of the Vienna Circle, and the philosophy in interwar Germany and Austria.
"Analysis, Removal, Effects and Risk of Pharmaceuticals in the Water Cycle" provides an overview of the current analytical methods for trace determination of pharmaceuticals in environmental samples. The book also reviews the fate and occurrence of pharmaceuticals in the water cycle for their elimination in wastewater and drinking water treatment, focusing on the newest developments in treatment technologies, such as membrane bioreactors and advanced oxidation processes. Pharmaceutically active substances are a class of new, so-called
emerging contaminants that have raised great concern in recent
years. Human and veterinary drugs are continuously being released
into the environment mainly as a result of the manufacturing
processes, the disposal of unused or expired products, and via
excreta. The analytical methodology for the determination of trace
pharmaceuticals in complex environmental matrices is still
evolving, and the number of methods described in the literature has
grown considerably. This volume leads the way, keeping chemistry
students, toxicologists, engineers, wastewater managers and related
professionals current with developments in this quickly evolving
area.
This comprehensive presentation of the integral equation method as applied to electro-analytical experiments is suitable for electrochemists, mathematicians and industrial chemists. The discussion focuses on how integral equations can be derived for various kinds of electroanalytical models. The book begins with models independent of spatial coordinates, goes on to address models in one dimensional space geometry and ends with models dependent on two spatial coordinates. Bieniasz considers both semi-infinite and finite spatial domains as well as ways to deal with diffusion, convection, homogeneous reactions, adsorbed reactants and ohmic drops. Bieniasz also discusses mathematical characteristics of the integral equations in the wider context of integral equations known in mathematics. Part of the book is devoted to the solution methodology for the integral equations. As analytical solutions are rarely possible, attention is paid mostly to numerical methods and relevant software. This book includes examples taken from the literature and a thorough literature overview with emphasis on crucial aspects of the integral equation methodology.
This book provides an excellent overview on the most recent results
on the industrial applications of Mossbauer spectroscopy attained
on the fields of nanotechnology, metallurgy, biotechnology and
pharmaceutical industry, applied mineralogy, energy production
industry (coal, oil, nuclear, solar, etc.), computer industry,
space technology, electronic and magnetic devices technology, ion
implantation technology, including topics like characterization of
novel construction materials, electronic components and magnetic
materials, composite materials, colloids, amorphous and nanophase
materials, small particles, coatings, interfaces, thin films and
multilayers, catalysis, corrosion, tribology, surface modification,
hydrogen storage, ball milling, radiation effects,
electrochemistry, batteries, etc. From the various reports a broad
overview emerges illustrating that the method can successfully be
applied in a wide variety of topics.
Nuclear magnetic resonance (NMR) is an analytical tool used by
chemists and physicists to study the structure and dynamics of
molecules. In recent years, no other technique has gained such
significance as NMR spectroscopy. It is used in all branches of
science in which precise structural determination is required and
in which the nature of interactions and reactions in solution is
being studied. "Annual Reports on NMR Spectroscopy" has established
itself as a premier means for the specialist and non-specialist
alike to become familiar with new techniques and applications of
NMR spectroscopy. This volume of "Annual Reports on NMR Spectroscopy" focuses on the analytical tool used by chemists and physicists and inlcudes topics such asProfiling of Food Samples, Recent Advances in Solution NMR Studies and Magic Angle Spinning NMR Studies of Protein Assemblies"
This thesis deals with topological orders from two different perspectives: from a condensed matter point of view, where topological orders are considered as breakthrough phases of matter; and from the emerging realm of quantum computation, where topological quantum codes are considered the most appealing platform against decoherence. The thesis reports remarkable studies from both sides. It thoroughly investigates a topological order called the double semion model, a counterpart of the Kitaev model but exhibiting richer quasiparticles as excitations. A new model for symmetry enriched topological order is constructed, which adds an onsite global symmetry to the double semion model. Using this topological phase, a new example of topological code is developed, the semion code, which is non-CSS, additive, non-Pauli and within the stabiliser formalism. Furthermore, the thesis analyses the Rashba spin-orbit coupling within topological insulators, turning the helical edge states into generic edges modes with potential application in spinstronics. New types of topological superconductors are proposed and the novel properties of the correspondingly created Majorana fermions are investigated. These Majorana fermions have inherent properties enabling braiding and the performance of logical gates as fundamental blocks for a universsal quantum computator.
The book explores the phenomenon of surface-enhanced Raman scattering (SERS), the huge amplification of Raman signal from molecules in the proximity of a metallic nanostructured surface, allowing readers to gain an in-depth understanding of the mechanisms affecting the spectroscopic response of SERS-active systems for effective applications. SERS spectroscopy is an ultrasensitive analytical technique with great potential for applications in the field of biophysics and nanomedicine. As examples, the author presents the design of nanocolloid-based SERS-active substrates for molecular sensing and of a folate-based SERS-active nanosensor capable of selectively interacting with cancer cells, enabling cancer diagnostics and therapy at the single-cell level. The author also suggests novel paths for the systematization of the SERS nanosystem design and experimental protocols to maximize sensitivity and reproducibility, which is essential when real-world biomedical applications are the goal of the study. With a combined approach, both fundamental and applied, and a detailed analysis of the state of the art, this book provides a valuable overview both for students new to SERS spectroscopy and for experts in the field.
In this thesis the author presents the results of extensive spectroscopy experiments beyond the bounds of each transition element to clarify the origins of characteristic spectral features and charge dynamics in charge-spin-orbital coupled phenomena in Mott-transition oxides. Several counterpart 3d transition-metal oxides were adopted as model systems suitable for examining the mechanisms involved, and their electronic structures were systematically investigated using three main spectroscopy methods. Comparative studies on the charge dynamics and Mott transition features of transition-metal oxides were performed: Charge dynamics and thermoelectricity in a typical Mott transition system La1 xSrxVO3, charge dynamics in a doped valence-bond solid system (Ti1 xVx)2O3 and in layered nickelates R2-xSrxNiO4 with charge-ordering instability are investigated thoroughly. The results obtained successfully provide a number of novel insights into the emergent phenomena near the Mott transition. "
NMR Spectroscopy for Chemical Analysis at Low Magnetic Fields, by Stefan Gloggler, Bernhard Blumich, Stephan Appelt Dynamic Nuclear Hyperpolarization in Liquids, by Ulrich L. Gunther NMR with Multiple Receivers, by Eriks Kupce TROSY NMR Spectroscopy of Large Soluble Proteins, by Yingqi Xu, Stephen Matthews Solid-State NMR Spectroscopy of Proteins, by Henrik Muller, Manuel Etzkorn, Henrike Heise Paramagnetic Solid-State Magic-Angle Spinning NMR Spectroscopy, by Guido Pintacuda, Gwendal Kervern"
This multi-author contributed volume contains chapters featuring the development of the DV-X method and its application to a variety of problems in Materials Science and Spectroscopy written by leaders of the respective fields. The volume contains a Foreword written by the Chairs of Japanese and Korea DV-X alpha Societies. This book is aimed at individuals working in Quantum Chemistry.
This book provides a detailed review of power amplifiers, including classes and topologies rarely covered in books, and supplies sufficient information to allow the reader to design an entire amplifier system, and not just the power amplification stage. A central aim is to furnish readers with ideas on how to simplify the design process for a preferred power amplifier stage by introducing software-based routines in a programming language of their choice. The book is in two parts, the first focusing on power amplifier theory and the second on EDA concepts. Readers will gain enough knowledge of RF and microwave transmission theory, principles of active and passive device design and manufacturing, and power amplifier design concepts to allow them to quickly create their own programs, which will help to accelerate the transceiver design process. All circuit designers facing the challenge of designing an RF or microwave power amplifier for frequencies from 2 to 18 GHz will find this book to be a valuable asset.
This new volume of "Methods in Enzymology" continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Forster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Forster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells"
This book presents a state-of-the-art summary and critical analysis of work recently performed in leading research laboratories around the world on the implementation of metal oxide nanomaterial research methodologies for the discovery and optimization of new sensor materials and sensing systems. The book provides a detailed description and analysis of (i) metal oxide nanomaterial sensing principles, (ii) advances in metal oxide nanomaterial synthesis/deposition methods, including colloidal, emulsification, and vapor processing techniques, (iii) analysis of techniques utilized for the development of low temperature metal oxide nanomaterial sensors, thus enabling a broader impact into sensor applications, (iv) advances, challenges and insights gained from the in situ/ex situ analysis of reaction mechanisms, and (v) technical development and integration challenges in the fabrication of sensing arrays and devices.
This book presents worked examples of five analytical procedures. These practical examples address traceability, validation and measurement uncertainty aspects in a systematic and consistent way, and cover applications in the analysis of water, food, as well as ores and minerals. This concept is based on the experiences of the TrainMiCc program, in which more than 9000 laboratory professionals all over Europe have participated.
NMR is an analytical tool used by chemists and physicists to study
the structure and dynamics of molecules. In recent years, no other
technique has gained such significance as NMR spectroscopy. It is
used in all branches of science in which precise structural
determination is required and in which the nature of interactions
and reactions in solution is being studied. "Annual Reports on NMR
Spectroscopy" has established itself as a premier means for the
specialist and non-specialist alike to become familiar with new
techniques and applications of NMR spectroscopy.
Zacarias Leon's thesis describes the development and validation of analytical methods to estimate the processes set in motion by percutaneous absorption of UV filters in sunscreen cosmetic products. Leon describes these methods in both in vitro and non-invasive in vivo methodologies. Currently dermatologists recommend the use of sunscreen products not only under conditions of extreme exposure to the sun but also in daily situations. However the chemical compounds in these products contain may lead to undesired processes and cause induced toxicity, estrogenic effects and endocrine activity. Leon establishes methods to investigate these effects and provides valuable information on the undesired side effects associated with the use of UV filters found in sunscreen products. The work in this thesis has led to a number of publications in renowned analytical chemistry journals.
Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications provides a unique source of information in an important area of chemistry. Since Volume 40 the nature and ethos of this series have been altered to reflect a change of emphasis towards 'Techniques, Materials and Applications'. Researchers will now find up-to-date critical reviews which provide in-depth analyses of the leading papers in the field, with authors commenting of the quality and value of the work in a wider context. Focus areas will include structure-function relationships, photochemistry and spectroscopy of inorganic complexes, and catalysis; materials such as ceramics, cements, pigments, glasses and corrosion products; techniques such as advanced laser spectroscopy and theoretical methods.
Topological Insulators (TIs) are insulators in the bulk, but have exotic metallic states at their surfaces. The topology, associated with the electronic wavefunctions of these systems, changes when passing from the bulk to the surface. This work studies, by means of infrared spectroscopy, the low energy optical conductivity of Bismuth based TIs in order to identify the extrinsic charge contribution of the bulk and to separate it from the intrinsic contribution of the surface state carriers. The extensive results presented in this thesis definitely shows the 2D character of the carriers in Bismuth-based topological insulators. The experimental apparatus and the FTIR technique, the theory of optical properties and Surface Plasmon Polaritons, as well as sample preparation of both crystals and thin films, and the analysis procedures are thoroughly described.
This new volume of "Methods in Enzymology" continues the legacy of
this premier serial by containing quality chapters authored by
leaders in the field. This volume coversFluorescence Fluctuation
Spectroscopy
This book presents developments of techniques for detection and analysis of two electrons resulting from the interaction of a single incident electron with a solid surface. Spin dependence in scattering of spin-polarized electrons from magnetic and non-magnetic surfaces is governed by exchange and spin-orbit effects. The effects of spin and angular electron momentum are shown through symmetry of experimental geometries: (i) normal and off normal electron incidence on a crystal surface, (ii) spin polarization directions within mirror planes of the surface, and (iii) rotation and interchange of detectors with respect to the surface normal. Symmetry considerations establish relationships between the spin asymmetry of two-electron distributions and the spin asymmetry of Spectral Density Function of the sample, hence providing information on the spin-dependent sample electronic structure. Detailed energy and angular distributions of electron pairs carry information on the electron-electron interaction and electron correlation inside the solid. The "exchange - correlation hole" associated with Coulomb and exchange electron correlation in solids can be visualized using spin-polarized two-electron spectroscopy. Also spin entanglement of electron pairs can be probed. A description of correlated electron pairs generation from surfaces using other types of incident particles, such as photons, ions, positrons is also presented. |
You may like...
The Asian Aspiration - Why And How…
Greg Mills, Olusegun Obasanjo, …
Paperback
The First Forty Days - The Essential Art…
Heng Ou, Amely Greeven, …
Hardcover
(1)
Root Cause Analysis - Improving…
Mark A. Latino, Robert J Latino, …
Paperback
R1,374
Discovery Miles 13 740
|