![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry
This book examines the most novel and state-of-the-art applications of biomaterials, with chapters that exemplify approaches with targeted drug delivery, diabetes, neurodegenerative diseases and cranioplasty implants. Expert contributors analyze biomaterials such as calcium phosphate, sol-gel and quenched glasses, metallic and polymer implants, bioactive glass, and polymer composites while also covering important areas such as the soft tissue replacement, apatites, bone regeneration and cell encapsulation. This book is appropriate for biomedical engineers, materials scientists, and clinicians who are seeking to implement the most advanced approaches and technologies with their patients.
This book describes the development of a new low-cost medium wavelength IR (MWIR) monolithic imager technology for high-speed uncooled industrial applications. It takes the baton on the latest technological advances in the field of vapor phase deposition (VPD) PbSe-based MWIR detection accomplished by the industrial partner NIT S.L., adding fundamental knowledge on the investigation of novel VLSI analog and mixed-signal design techniques at circuit and system levels for the development of the readout integrated device attached to the detector. In order to fulfill the operational requirements of VPD PbSe, this work proposes null inter-pixel crosstalk vision sensor architectures based on a digital-only focal plane array (FPA) of configurable pixel sensors. Each digital pixel sensor (DPS) cell is equipped with fast communication modules, self-biasing, offset cancellation, analog-to-digital converter (ADC) and fixed pattern noise (FPN) correction. In-pixel power consumption is minimized by the use of comprehensive MOSFET subthreshold operation.
Activity Transport in Liquid Metal Systems: Transport of Radioactive Material in Liquid Sodium (W.F. Brehm). Corrosion by Liquid Metals: Postcorrosion and Metallurgical Analyses of Sodium Piping Materials Operated for 100,000 Hours (E. Yoshida et al.). Influence of Liquid Metals on the Mechanical Properties of Materials: Variation in the Tensile Properties of AISI 316 Stainless Steel on Exposure to High Carbon Dynamic Sodium at 723K (H.S. Khatak et al.). Purification of Liquid Metals and the Purity Measurement: Sodium for Fast Breeders-Production, Purification, Quality (M. Salmon). Chemical Reactions in Liquid Metals: Caesium and Its Mixtures: Their Chemical Reactions with Alloys of Transition Metals Used to Clad Reactor Fuels (R.J. Pulham et al.). Physical Chemistry of Solutions in Liquid Metals: Solubility of Metals in the Liquid Alkali Metals: The Solubility Data Program of the IUPAC (H.U. Borgstedt, C. Guminski). Experiments in Relation to New Applications of Liquid Metals: Experience in Operating Heavy Liquid Metal MHD Twophase Flow Systems (H. Branover, S. Lesin). Technical Experiments with Liquid Metals: Largescale FAUNA Experiments on the Interaction of Sodium, Concrete and Steel (W. Cherdron, W. Schutz. 37 additional articles. Index.
Avarietyof?uorescentandluminescentmaterialsintheformofmolecules,their complexes,andnanoparticlesareavailableforimplementationasreportingunits intosensingtechnologies. Increasingdemandsfromtheseapplicationareasrequire developmentofnew?uorescencereportersbasedonassociationandaggregationof ?uorescencedyesandontheirincorporationintodifferentnanostructures. Inter- tionsbetweenthesedyesandtheirincorporatingmatricesleadtonewspectroscopic effectsthatcanbeactivelyusedforoptimizingthesensordesign. Oneofthese effects is a spectacular formation of J-aggregates with distinct and very sharp excitationandemissionbands. Byincorporationintonanoparticles,organicdyes offer dramatically increased brightness together with improvement of chemical stabilityandphotostability. Moreover,certaindyescanformnanoparticlesth- selvessothattheirspectroscopicpropertiesareimproved. Semiconductorquantum dotsaretheothertypeofnanoparticles thatpossessuniqueandveryattractive photophysicalandspectroscopicproperties. Manyinterestingandnotfullyund- stoodphenomenaareobservedinclusterscomposedofonlyseveralatomsofnoble metals. Inconjugatedpolymers,strongelectronicconjugationbetweenelementary chromophoricunitsresultsindramaticeffectsinquenchingandinconformati- dependentspectroscopicbehavior. Possessingsuchpowerfulanddiversearsenaloftools,wehavetoexplorethem innovelsensingandimagingtechnologiesthatcombineincreasedbrightnessand sensitivityinanalytedetectionwithsimplicityandlowcostofproduction. The present book overviews the pathways for achieving this goal. In line with the discussion on monomeric ?uorescence reporters in the accompanying book (Vol. 8ofthisseries),aninsightfulanalysisofphotophysicalmechanismsbehind the ?uorescence response of composed and nanostructured materials is made. Based on the progress in understanding these mechanisms, their realization in differentchemicalstructuresisoverviewed. vii viii Preface Demonstratingtheprogressinaninterdisciplinary?eldofresearchanddev- opment,thisbookisprimarilyaddressedtospecialistswithdifferentbackground- physicists, organic and analytical chemists, and photochemists - to those who developandapplynew?uorescencereporters. Itwillalsobeusefultospecialists inbioanalysisandbiomedicaldiagnostics. Kyiv,Ukraine AlexanderP. Demchenko June2010 Contents PartI GeneralAspects NanocrystalsandNanoparticlesVersusMolecularFluorescent LabelsasReportersforBioanalysisandtheLifeSciences: ACriticalComparison ...3 UteResch-Genger,MarkusGrabolle,RolandNitschke, andThomasNann OptimizationoftheCouplingofTargetRecognition andSignalGeneration ...41 AnaB. Descalzo,ShengchaoZhu,TobiasFischer,andKnutRurack CollectiveEffectsIn?uencingFluorescenceEmission ...107 AlexanderP. Demchenko PartII EncapsulatedDyesandSupramolecularConstructions FluorescentJ-AggregatesandTheirBiologicalApplications ...135 MykhayloYu. LosytskyyandValeriyM. Yashchuk Conjugates,Complexes,andInterlockedSystems BasedonSquarainesandCyanines ...159 LeonidD. Patsenker,AnatoliyL. Tatarets,OleksiiP. Klochko, andEwaldA. Terpetschnig PartIII Dye-DopedNanoparticlesandDendrimers Dye-DopedPolymericParticlesforSensingandImaging ...193 SergeyM. Borisov,TorstenMayr,Gu..nterMistlberger,andIngoKlimant ix x Contents Silica-BasedNanoparticles:DesignandProperties ...229 SongLiang,CarrieL. John,ShupingXu,JiaoChen,YuhuiJin, QuanYuan,WeihongTan,andJuliaX. Zhao LuminescentDendrimersasLigandsandSensors ofMetalIons ...2 53 GiacomoBergamini,EnricoMarchi,andPaolaCeroni ProspectsforOrganicDyeNanoparticles ...285 HiroshiYao PartIV LuminescentMetalNanoclusters Few-AtomSilverClustersasFluorescentReporters ...307 IsabelD?'ezandRobinH. A. Ras LuminescentQuantumClustersofGoldasBio-Labels ...333 M. A. HabeebMuhammedandT. Pradeep PartV ConjugatedPolymers Structure,EmissiveProperties,andReportingAbilities ofConjugatedPolymers ...357 MaryA. Reppy OpticalReportingbyConjugatedPolymers viaConformationalChanges ...389 RozalynA. SimonandK. PeterR. Nilsson FluorescenceReportingBasedonFRETBetweenConjugated PolyelectrolyteandOrganicDyeforBiosensorApplications ...417 Kan-YiPuandBinLiu Index ...455 PartI GeneralAspects NanocrystalsandNanoparticlesVersus MolecularFluorescentLabelsasReporters forBioanalysisandtheLifeSciences: ACriticalComparison UteResch-Genger,MarkusGrabolle,RolandNitschke,andThomasNann Abstract At the core of photoluminescence techniques are suitable ?uorescent labels and reporters, the spectroscopic properties of which control the limit of detection,thedynamicrange,andthepotentialformultiplexing.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Reviews in Fluorescence 2016, the tenth volume of the book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence and closely related disciplines. It summarizes the year's progress in fluorescence and its applications, with authoritative reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Reviews in Fluorescence offers an essential reference material for any research lab or company working in the fluorescence field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of fluorescence will find it an invaluable resource.
Countercurrent chromatography (CCC) is a separation technique in
which the stationary phase is a liquid. The mobile phase is also a
liquid, so biphasic liquid systems with at least two solvents are
used. Centrifugal fields are used to hold the liquid stationary
phase while pushing the liquid mobile phase through it.
This book is the result of a working group sponsored by ISSI in
Bern, which was initially created to study possible ways to
calibrate a Far Ultraviolet (FUV) instrument after launch. In most
cases, ultraviolet instruments are well calibrated on the ground,
but unfortunately, optics and detectors in the FUV are very
sensitive to contaminants and it is very challenging to prevent
contamination before and during the test and launch sequences of a
space mission. Therefore, ground calibrations need to be confirmed
after launch and it is necessary to keep track of the temporal
evolution of the sensitivity of the instrument during the mission.
Looking at the literature available, it is clear that there is a need for a book on LC-MS applications in environmental analysis. This book endeavours to answer the following questions: What interface to use to solve "my detection problem"? Can I obtain enough sensitivity for the confirmation of my compound in real-world environmental samples? Is there enough structural information? The present book aims to provide a critical evaluation of LC-MS in environmental chemistry and it is structured in different areas. Apart from an introductory section with fundamental aspects, application areas using the most relevant interfacing systems (PB, TSP, ES) for the characterization of environmental compounds are included. In this sense, applications are discussed on the characterization of the most relevant compounds of environmental interest such as pesticides, detergents, dyes, polar metabolites, waste streams, organotin compounds and marine toxins with comparison between different interfacing systems. Finally, new methods and strategies in LC-MS, e.g. the use of capillary electrophoresis, MS together with on-line post-column systems in LC-MS are also shown. By the nature of its content and written as it is by experienced practitioners, the book is intended to serve as a practical reference for analytical chemists who need to use LC-MS in environmental studies. Each chapter includes sufficient references to the literature to serve as a valuable starting point and also contains detailed investigations. The broad spectrum of the book and its application to environmental priority compounds makes it unique in many ways.
This book provides an easily understandable introduction to solid state physics for chemists and engineers. Band theory is introduced as an extension of molecular orbital theory, and its application to organic materials is described. Phenomena beyond band theory are treated in relation to magnetism and electron correlation, which are explained in terms of the valence bond theory and the Coulomb and exchange integrals. After the fundamental concepts of magnetism are outlined, the relation of correlation and superconductivity is described without assuming a knowledge of advanced physics. Molecular design of organic conductors and semiconductors is discussed from the standpoint of oxidation-reduction potentials, and after a brief survey of organic superconductors, various applications of organic semiconductor devices are described. This book will be useful not only for researchers but also for graduate students as a valuable reference.
" Structural Chemistry of Glasses" provides detailed coverage of the subject for students and professionals involved in the physical chemistry aspects of glass research. Starting with the historical background and importance of glasses, it follows on with methods of preparation, structural and bonding theories, and criteria for glass formation including new approaches such as the constraint model.
This thesis addresses fundamental scientific questions such as: How are complex natural products synthesized in vivo? Can we replicate these conditions in a laboratory environment? What is the biological function of such secondary metabolites? What are the biological origins of chirality? These issues are explored in an accessible manner using a multidisciplinary approach spanning chemistry, biology and physics to investigate an interesting family of complex natural products isolated from marine molluscs - the tridachiahydropyrones. The work has achieved: Elegant biomimetic syntheses of a number of the tridachiahydropyrone compounds in vitro using organic synthesis techniques The characterization of the interactions between these compounds and a range of model membrane systems using a series of fluorescence spectroscopic studies The investigation of the antioxidant and photoprotective properties of the compounds by means of biophysical assay techniques The synthesis of tridachiahydropyrone utilizing the model membrane systems as biomimetic reaction media.
Leading researchers discuss the past and present of chromatography More than one hundred years after Mikhail Tswett pioneered adsorption chromatography, his separation technique has developed into an important branch of scientific study. Providing a full portrait of the discipline, "Chromatography: A Science of Discovery" bridges the gap between early, twentieth-century chromatography and the cutting edge of today's research. Featuring contributions from more than fifty award-winning chromatographers, "Chromatography" offers a multifaceted look at the development and maturation of this field into its current state, as well as its importance across various scientific endeavors. The coverage includes: Consideration of chromatography as a unified science rather than just a separation method Key breakthroughs, revolutions, and paradigm shifts in chromatography Profiles of Nobel laureates who used chromatography in their research, and the role it played Recent advances in column technology Chromatography's contributions to the agricultural, space, biological/medical sciences; pharmaceutical science; and environmental, natural products, and chemical analysis Future trends in chromatography With numerous references and an engaging series of voices, "Chromatography: A Science of Discovery" offers a diverse look at an essential area of science. It is a unique and invaluable resource for researchers, students, and other interested readers who seek a broader understanding of this field.
Working in the lab, but unsure what your results actually mean? Would you like to know how to applytrueness tests, calculate standard deviations, estimate measurement uncertainties or test for linearity? This book offers you a problem-based approach to analytical quality assurance (AQA). After a short introduction into required fundamentals, various topics such as statistical tests, linear regression and calibration, tool qualification or method validation are presented in the form of exercises for self-study. Solutions are provided in a clear step-by-step manner. Interactive Excel-sheets are available as Extra Materials for trying out the various concepts. For professionals as well as graduate students confronted with analytical quality assurance for the first time, this book will be the clue to meeting such challenges.
This work addresses the computation of excited-state properties of systems containing thousands of atoms. To achieve this, the author combines the linear response formulation of time-dependent density functional theory (TDDFT) with linear-scaling techniques known from ground-state density-functional theory. This extends the range of TDDFT, which on its own cannot tackle many of the large and interesting systems in materials science and computational biology. The strengths of the approach developed in this work are demonstrated on a number of problems involving large-scale systems, including exciton coupling in the Fenna-Matthews-Olson complex and the investigation of low-lying excitations in doped p-terphenyl organic crystals.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
This book provides a line of communication between academia and end users/practitioners to advance forensic science and boost its contribution to criminal investigations and court cases. By covering the state of the art of promising technologies for the analysis of trace evidence using a controlled vocabulary, this book targets the forensics community as well as, crucially, informing the end users on novel and potential forensic opportunities for the fight against crime. By reporting end users commentaries at the end of each chapter, the relevant academic community is provided with clear indications on where to direct further technological developments in order to meet the law requirements for operational deployment, as well as the specific needs of the end users. Promising chemistry based technologies and analytical techniques as well as techniques that have already shown to various degrees an operational character are covered. The majority of the techniques covered have imaging capabilities, that is the ability to visualize the distribution of the target molecules within the trace evidence recovered. This feature enhances intelligibility of the information making it also accessible to a lay audience such as that typically found with a court jury. Trace evidence discussed in this book include fingermarks, bodily fluids, hair, gunshot residues, soil, ink and questioned documents thus covering a wide range of possible evidence recovered at crime scenes.
Electrochemical processes are long known but are becoming increasingly important again, due to modern applications, such as electro-mobility or energy storage. Thus, electrochemistry is not only a topic for chemists and physicists, but also for technical engineers. This book addresses all aspects of electrochemistry, which are important in these days: electrodes, corrosion, interphases, processes, energy storage, analytical methods, and sensors.
The second edition deals with all essential aspects of non-relativistic quantum physics up to the quantisation of fields. In contrast to common textbooks of quantum mechanics, modern experiments are described both for the purpose of foundation of the theory and in relation to recent applications. Links are made to important research fields and applications such as elementary particle physics, solid state physics and nuclear magnetic resonance in medicine, biology and material science. Special emphasis is paid to quantum physics in nanoelectronics such as resonant tunnelling, Coulomb blockade and the realisation of quantum bits. This second edition also considers quantum transport through quantum point contacts and its application as charge detectors in nanoelectronic circuits. Also the realization and the study of electronic properties of an artificial quantum dot molecule are presented. Because of its recent interest a brief discussion of Bose-Einstein condensation has been included, as well as the recently detected Higgs particle. Another essential new addition to the present book concerns a detailed discussion of the particle picture in quantum field theory. Counterintuitive aspects of single particle quantum physics such as particle-wave duality and the Einstein-Podolski-Rosen (EPR) paradox appear more acceptable to our understanding if discussed on the background of quantum field theory. The non-locality of quantum fields explains non-local behaviour of particles in classical Schroedinger quantum mechanics. Finally, new problems have been added. The book is suitable as an introduction into quantum physics, not only for physicists but also for chemists, biologists, engineers, computer scientists and even for philosophers as far as they are interested in natural philosophy and epistemology.
This thesis presents optical methods to split the energy levels of electronic valleys in transition-metal dichalcogenides (TMDs) by means of coherent light-matter interactions. The electronic valleys found in monolayer TMDs such as MoS2, WS2, and WSe2 are among the many novel properties exhibited by semiconductors when thinned down to a few atomic layers, and have have been proposed as a new way to carry information in next generation devices (so-called valleytronics). These valleys are, however, normally locked in the same energy level, which limits their potential use for applications. The author describes experiments performed with a pump-probe technique using transient absorption spectroscopy on MoS2 and WS2. It is demonstrated that hybridizing the electronic valleys with light allows one to optically tune their energy levels in a controllable valley-selective manner. In particular, by using off-resonance circularly polarized light at small detuning, one can tune the energy level of one valley through the optical Stark effect. Also presented within are observations, at larger detuning, of a separate contribution from the so-called Bloch--Siegert effect, a delicate phenomenon that has eluded direct observation in solids. The two effects obey opposite selection rules, enabling one to separate the two effects at two different valleys.
This comprehensive book covers the environmental issues concerning silver nanoparticles (AgNPs). Following an introduction to the history, properties and applications, the environmental concerns of AgNPs is discussed. In the second chapter, the separation, characterization and quantification of AgNPs in environment samples are described in detail. In the remaining parts of the book, the authors focus on the environmental processes and effects of AgNPs, with chapters on the pathway into environment, fate and transport, toxicological effects and mechanisms, as well as the environmental bioeffects and safety-assessment of AgNPs in the environment. This book is designed to describe current understanding of the environmental aspects of AgNPs. It provides a valuable resource to students and researchers in environmental science and technology, nanotechnology, toxicology, materials science and ecology; as well as to professionals involved in the production and consumption of AgNPs in various areas including catalysis, food products, textiles/fabrics, and medical products and devices. Jingfu Liu and Guibin Jiang are professors at State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
This book provides an overview of friction stir welding and friction stir spot welding with a focus on aluminium to aluminium and aluminium to copper. It also discusses experimental results for friction stir spot welding between aluminium and copper, offering a good foundation for researchers wishing to conduct more investigations on FSSW Al/Cu. Presenting full methodologies for manufacturing and case studies on FSSW Al/Cu, which can be duplicated and used for industrial purposes, it also provides a starting point for researchers and experts in the field to investigate the FSSW process in detail. A variant of the friction stir welding process (FSW), friction stir spot welding (FSSW) is a relatively new joining technique and has been used in a variety of sectors, such as the automotive and aerospace industries. The book describes the microstructural evolution, chemical and mechanical properties of FSW and FSSW, including a number of case studies.
The book is based on lectures presented on the International Summer School on Biophysics held in Croatia in September 2009. The advantage of the School is that it provides advanced training in very broad scope of areas related to biophysics contrary to other similar schools or workshops that are centered mainly on one topic or technique. In this volume, tenth in the row, the papers in the field of biophysics are presented. The topics are biological phenomena from single protein to macromolecular aggregations structure by using variant physical methods (NMR, EPR, FTIR, Mass Spectrometry, etc.). The interrelationship of supramolecular structures and their functions is enlightened by applications of principals of these physical methods in the biophysical and molecular biology context.
This book presents the principle ideas of combining different analytical techniques in multi-dimensional analysis schemes. It reviews the basic principles and instrumentation of multi- dimensional chromatography and the hyphenation of liquid chromatography with selective spectroscopic detectors and presents experimental protocols for the analysis of complex polymers. It is the consequent continuation of "HPLC of Polymers" from 1999 by the same authors. Like its 'predecessor', this book discusses the theoretical background, equipment, experimental procedures and applications for each separation technique, but in contrast treats multi-dimensional and coupled techniques. "Multidimensional HPLC of Polymers" intends to review the state of the art in polymer chromatography and to summarize the developments in the field during the last 15 years. With its tutorial and laboratory manual style it is written for beginners as well as for experienced chromatographers, and will enable its readers (polymer chemists, physicists and material scientists, as well as students of polymer and analytical sciences) to optimize the experimental conditions for their specific separation problems. |
![]() ![]() You may like...
|