![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry
This book sets out to give a rigorous mathematical description of the greenhouse effect through the theory of infrared atmospheric emission. In contrast to traditional climatological analysis, this approach eschews empirical relations in favour of a strict thermodynamical derivation, based on data from NASA and from the HITRAN spectroscopy database. The results highlight new aspects of the role of clouds in the greenhouse effect.
During the past decade, monolithic materials in the shape of discs,
stacked layers, rolled sheets, sponges, irregular chunks, tubes,
and cylinders have all been successfully demonstrated. These
formats were prepared from a wide variety of materials including
natural polymers such as cellulose, synthetic polymers that
involved porous styrene-, methacrylate-, and acrylamide-based
polymers, and inorganic materials, mainly silica. Each approach is
interesting from the point of view of both preparation and
application.
This volume offers up-to-date and comprehensive information on various aspects of the Nile River, which is the main source of water in Egypt. The respective chapters examine the Nile journey; the Aswan High Dam Reservoir; morphology and sediment quality of the Nile; threats to biodiversity; fish and fisheries; rain-fed agriculture, rainfall data, and fluctuations in rainfall; the impact of climate change; and hydropolitics and legal aspects. The book closes with a concise summary of the conclusions and recommendations provided in the preceding chapters, and discusses the requirements for the sustainable development of the Nile River and potential ways to transform conflicts into cooperation. Accordingly, it offers an invaluable source of information for researchers, graduate students and policymakers alike.
This thesis focuses on nonlinear spectroscopy from a quantum optics perspective. First, it provides a detailed introduction to nonlinear optical signals; starting from Glauber's photon counting formalism, it establishes the diagrammatic formulation, which forms the backbone of nonlinear molecular spectroscopy. The main body of the thesis investigates the impact of quantum correlations in entangled photon states on two-photon transitions, with a particular focus on the time-energy uncertainty, which restricts the possible simultaneous time and frequency resolution in measurements. It found that this can be violated with entangled light for individual transitions. The thesis then presents simulations of possible experimental setups that could exploit this quantum advantage. The final chapter is devoted to an application of the rapidly growing field of multidimensional spectroscopy to trapped ion chains, where it is employed to investigate nonequilibrium properties in quantum simulations.
This book highlights how the properties and structure of materials are affected by dynamic high pressures generated by explosions, projectile impacts, laser compression, electric discharge or ball milling. Starting with the basics of shock-wave physics and an outline of experimental techniques, it then surveys dynamic compressibility and equations of state of various substances, phase transitions and syntheses of novel compounds under shock. It covers various industrial applications including hardening of metals and grinding (fragmentation) of solids, saturation of solids with defects for use as catalysts, production of superhard materials (synthetic diamond, BN (boron nitride)) and nanomaterials, especially nanodiamond, and discusses state-of-the-art techniques such as combining dynamic and static compression to obtain monolithic materials.
Imaging by Nuclear Magnetic Resonance (NMR) has been established in clinical diagnosis and is conquering materials science with a rapidly expanding number of applications in basic research as well as product and quality control for fluid flow, elastomers, and polymer materials. This book will provide graduate students, scientists and engineers with an introduction to the field. It is the first book on the subject and is likely to become the standard text for years to come.
IR spectroscopy has become without any doubt a key technique to answer questions raised when studying the interaction of proteins or peptides with solid surfaces for a fundamental point of view as well as for technological applications. Principle, experimental set ups, parameters and interpretation
rules of several advanced IR-based techniques; application to
biointerface characterisation through the presentation of recent
examples, will be given in this book. It will describe how to
characterise amino acids, protein or bacterial strain interactions
with metal and oxide surfaces, by using infrared spectroscopy, in
vacuum, in the air or in an aqueous medium. Results will highlight
the performances and perspectives of the technique.
This book explores how nuclear magnetic resonance (NMR) spectroscopy may be used for spatial structural elucidation of novel compounds from fungal and synthetic sources. Readers will discover the exciting world of NOE (nuclear Overhauser effect), RDC (residual dipolar coupling) and J-coupling constants, both short- and long range. With emphasis on obtaining structural knowledge from these NMR observables, focus is moved from solving a static 3D structure to solving the structural space inhabited by small organic molecules. The book outlines the development and implementation of two Heteronuclear Multiple Bond Correlation-type NMR experiments, and the 3D structural elucidation of multiple known and novel compounds. In addition, a new method of back-calculating RDCs (allowing for more flexible structures to be investigated), and the synthesis and evaluation of novel chiral alignment media for ab initio determination of absolute stereochemistry of small molecules using RDCs are also included. Challenges that 3D structural generation of small compounds face are also covered in this work.
This book is intended to provide a course of infrared spectroscopy for quantitative analysis, covering both bulk matter and surface/interface analyses. Although the technology of Fourier transform infrared (FT-IR) spectroscopy was established many years ago, the full potential of infrared spectroscopy has not been properly recognized, and its intrinsic potential is still put aside. FT-IR has outstandingly useful characteristics, however, represented by the high sensitivity for monolayer analysis, highly reliable quantitativity, and reproducibility, which are quite suitable for surface and interface analysis. Because infrared spectroscopy provides rich chemical information-for example, hydrogen bonding, molecular conformation, orientation, aggregation, and crystallinity-FT-IR should be the first choice of chemical analysis in a laboratory. In this book, various analytical techniques and basic knowledge of infrared spectroscopy are described in a uniform manner. In particular, techniques for quantitative understanding are particularly focused for the reader's convenience.
Membrane Characterization provides a valuable source of information on how membranes are characterized, an extremely limited field that is confined to only brief descriptions in various technical papers available online. For the first time, readers will be able to understand the importance of membrane characterization, the techniques required, and the fundamental theory behind them. This book focuses on characterization techniques that are normally used for membranes prepared from polymeric, ceramic, and composite materials.
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive coverage of the literature on this topic. For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an invaluable source of current methods and applications. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes." For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This series provides an unequalled source of information on an area of chemistry that continues to grow in importance. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in the field, researchers will find this an invaluable source of information on current methods and applications. Volume 39 provides a critical review of the literature published up to late 2004.
The fundamentals of the discipline, now complete with the latest experimental research and techniques Factor analysis is a mathematical tool for examining a wide range of data sets, with applications especially important to the design of experiments (DOE), spectroscopy, chromatography, and chemometrics. Whereas the first two editions concentrated on standardizing the fundamentals of this emerging discipline, the Third Edition of Factor Analysis in Chemistry, the "bible" of factor analysis, proves a comprehensive handbook at a level that is consistent with the research and design of experiments today. With the exception of updates, the introductory chapters remain unchanged. Chapter 6 has been edited to focus on evolutionary methods, including window factor analysis, transmutation, and DECRA. Selections on partial least squares and multimode analysis have been expanded and consolidated into two new chapters, 7 and 8. Some of the latest advances in a wide variety of fields, such as chromatography, NMR, biomedicine, environmental science, food, and fuels, are described in the applications chapters (chapters 9 through 12). Other features of the text include:
Factor Analysis in Chemistry, Third Edition remains the premier reference in its field.
This book presents the dispersion relation in heavily doped nano-structures. The materials considered are III-V, II-VI, IV-VI, GaP, Ge, Platinum Antimonide, stressed, GaSb, Te, II-V, HgTe/CdTe superlattices and Bismuth Telluride semiconductors. The dispersion relation is discussed under magnetic quantization and on the basis of carrier energy spectra. The influences of magnetic field, magneto inversion, and magneto nipi structures on nano-structures is analyzed. The band structure of optoelectronic materials changes with photo-excitation in a fundamental way according to newly formulated electron dispersion laws. They control the quantum effect in optoelectronic devices in the presence of light. The measurement of band gaps in optoelectronic materials in the presence of external photo-excitation is displayed. The influences of magnetic quantization, crossed electric and quantizing fields, intense electric fields on the on the dispersion relation in heavily doped semiconductors and super-lattices are also discussed. This book contains 200 open research problems which form the integral part of the text and are useful for graduate students and researchers. The book is written for post graduate students, researchers and engineers.
This book focuses on the study of the interfacial water using molecular dynamics simulation and experimental sum frequency generation spectroscopy. It proposes a new definition of the free O-H groups at water-air interface and presents research on the structure and dynamics of these groups. Furthermore, it discusses the exponential decay nature of the orientation distribution of the free O-H groups of interfacial water and ascribes the origin of the down pointing free O-H groups to the presence of capillary waves on the surface. It also describes how, based on this new definition, a maximum surface H-bond density of around 200 K at ice surface was found, as the maximum results from two competing effects. Lastly, the book discusses the absorption of water molecules at the water-TiO2 interface. Providing insights into the combination of molecular dynamics simulation and experimental sum frequency generation spectroscopy, it is a valuable resource for researchers in the field.
This volume provides a comprehensive overview of advanced research in the field of efficient, clean and renewable energy production, conversion and storage. The ten chapters, written by internationally respected experts, address the following topics: (1) solar and wind energy; (2) energy storage in batteries; (3) biomass; and (4) socio-economic aspects of energy. Given its multidisciplinary approach, which combines environmental analysis and an engineering perspective, the book offers a valuable resource for all researchers and students interested in environmentally sustainable energy production, conversion, storage and its engineering.
Now available is the second edition of a book which has been
described as ..".an exceptionally lucid, easy-to-read
presentation... would be an excellent addition to the collection of
every analytical chemist. I recommend it with great enthusiasm."
(Analytical Chemistry) N.R. Draper reviewed the first edition in Publication of the
International Statistical Institute ..".discussion is careful,
sensible, amicable, and modern and can be recommended for the
intended readership." The scope of the first edition has been revised, enlarged and
expanded. Approximately 30% of the text is new. The book first
introduces the reader to the fundamentals of experimental design.
Systems theory, response surface concepts, and basic statistics
serve as a basis for the further development of matrix least
squares and hypothesis testing. The effects of different
experimental designs and different models on the
variance-covariance matrix and on the analysis of variance (ANOVA)
are extensively discussed. Applications and advanced topics (such
as confidence bands, rotatability, and confounding) complete the
text. Numerous worked examples are presented. The clear and practical approach adopted by the authors makes the book applicable to a wide audience. It will appeal particularly to those with a practical need (scientists, engineers, managers, research workers) who have completed their formal education but who still need to know efficient ways of carrying out experiments. It will also be an ideal text for advanced undergraduate and graduate students following courses in chemometrics, data acquisition and treatment, and design of experiments.
This book covers various aspects of characterization of materials in the areas of metals, alloys, steels, welding, nanomaterials, intermetallic, and surface coatings. These materials are obtained by different methods and techniques like spray, mechanical milling, sol-gel, casting, biosynthesis, and chemical reduction among others. Some of these materials are classified according to application such as materials for medical application, materials for industrial applications, materials used in the oil industry and materials used like coatings. The authors provide a comprehensive overview of structural characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, image analysis, finite element method (FEM), optical microscopy (OM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), differential scanning calorimetry (DSC), ultraviolet-visible spectroscopy (UV-Vis), infrared photo-thermal radiometry (IPTR), electrochemical impedance spectroscopy (EIS), thermogravimetry analysis (TGA), thermo luminescence (TL), photoluminescence (PL), high resolution transmission electron microscopy (HRTEM), and radio frequency (RF). The book includes theoretical models and illustrations of characterization properties-both structural and chemical.
This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science, topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications. To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.
This book introduces the ideas and concepts of nonlinear dielectric spectroscopy, outlines its history, and provides insight into the present state of the art of the experimental technology and understanding of nonlinear dielectric effects. Emphasis is on what can be learned from nonlinear experiments that could not be derived from the linear counterparts. The book explains that nonlinear dielectric spectroscopy can be used as a tool to measure structural recovery or physical aging, as well as connections between dynamics and thermodynamic variables such as enthalpy and entropy. Supercooled liquids in their viscous regime are ideal candidates for investigating nonlinear effects, because they are particularly sensitive to changes in temperature, and thus also to changes in the electric field. Other interesting materials covered are plastic crystals and complex liquids near criticality. The book also points out that, compared with other techniques such as mechanical shear experiments, the nonlinear regime of dielectric spectroscopy is special in the sense that the energies involved always remain small compared with thermal energies. To demonstrate this, nonlinear features of mechanical experiments are discussed. Theoretical approaches to nonlinear effects are particularly complicated because the tools available for the linear regime no longer apply. As a result, there is no single generally accepted theory to nonlinear dielectric responses of real liquids. Various approaches to nonlinear dielectric features have been reported, and the different aspects are communicated in several chapters. The book communicates recent progress most effectively through individual contributions from specialists in their respective fields.Chapter 'Third and Fifth Harmonic Responses in Viscous Liquids' is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book covers the basic theory and techniques, as well as various applications of pulsed electron-electron double resonance (PELDOR or DEER). This electron paramagnetic resonance technique is able to measure the distances and the distribution of distances between electron spins in the 1.5-15 nanometer scale; to determine the geometry of spin-labeled molecules; to estimate the number of interacting spins in spin clusters; and to characterize the spatial distribution of paramagnetic centers. As a result, PELDOR is now a popular method in EPR spectroscopy, particularly in the context of biologically important systems and soft matter and is also applied to problems in physical chemistry, biochemistry, polymers, soft matter and materials. Enabling readers to gain an understanding of the fundamentals of the PELDOR methods and an appreciation of the opportunities PELDOR provides, the book helps readers solve their own physical and biochemical problems.
This book describes the development of three dimensional electroactive fibres using a novel coaxial wet-spinning approach from organic conductors in combination with non-conducting hydrogel polymers. This book also presents the characterization and evaluation of multiaxial biofibres in terms of mechanical, physical, electrochemical and biological properties, and explores their use in a diverse range of applications including implantable electrodes, drug delivery systems and energy-storage systems. In the first chapter, the author highlights the significance of engineering three dimensional fibres, introduces the involved hydrogels and organic conductors with emphasis on their biomedical application, and collects some of the previously established methods for fabrication of biofibres. In the second chapter, particular attention is given to the overall experimental fabrication methods and characterization analyses conducted in the work. Chapters three to five present the main findings of this work, in which readers will discover how novel hybrid hydrogel fibres with an inner core of chitosan and alginate were prepared and characterized, how graphene was incorporated into coaxial wet-spun biofibres, and how one-dimensional triaxial fibres were developed using a novel coaxial wet-spinning fibre production method and applied as potential battery devices. In the final chapter of this work, the author summarizes the main achievements of the work and outlines some recommendations for future research.
A recipient of the PROSE 2017 Honorable Mention in Chemistry & Physics, Radioactivity: Introduction and History, From the Quantum to Quarks, Second Edition provides a greatly expanded overview of radioactivity from natural and artificial sources on earth, radiation of cosmic origins, and an introduction to the atom and its nucleus. The book also includes historical accounts of the lives, works, and major achievements of many famous pioneers and Nobel Laureates from 1895 to the present. These leaders in the field have contributed to our knowledge of the science of the atom, its nucleus, nuclear decay, and subatomic particles that are part of our current knowledge of the structure of matter, including the role of quarks, leptons, and the bosons (force carriers). Users will find a completely revised and greatly expanded text that includes all new material that further describes the significant historical events on the topic dating from the 1950s to the present.
Specialist Periodical Reports provide systematic and critical review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject, the series creates a unique service for the active research chemist with regular critical in-depth accounts of progress in particular areas of chemistry. Subject coverage of all volumes is very similar and publication is on an annual or biennial basis. As EPR continues to find new applications in virtually all areas of modern science, including physics, chemistry, biology and materials science, this series caters not only for experts in the field, but also those wishing to gain a general overview of EPR applications in a given area.
Sales Arguments |
You may like...
Burchell's African Odyssey - Revealing…
Roger Stewart, Marion Whitehead
Hardcover
(2)
The Well-Gardened Mind - The Restorative…
Sue Stuart-Smith
Paperback
|