![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry
Chapters collected from "The Virtual Conference on Chemistry and its Applications (VCCA-2021) - Research and Innovations in Chemical Sciences: Paving the Way Forward". This conference was held in August 2021 and organized by the Computational Chemistry Group of the University of Mauritius. These peer-reviewed chapters offer insights into research on fundamental and applied chemistry with interdisciplinary subject matter.
This book focuses on the characterization of the amorphous phase of polymers, whether they are pure amorphous or semi-crystalline ones, above Tg or below Tg, by studying the relaxation of dipoles and space charges naturally found in their structure after they have been activated by the application of a voltage field. The experimental deconvolution of the relaxation modes responsible for internal motion in the amorphous phase is coupled with a mathematical procedure (Thermal-Windowing Deconvolution-TWD) that leads to the understanding of their coupling characteristics which, it is shown, relate to the state of the material itself, for instance its non-equilibrium state or its internal stress for matter belonging to interfaces between aggregated or dispersed phases. Describes quantitatively the Thermal Stimulated Depolarization techniques of polymer characterization (TSD, TWD), i.e. how to decouple the relaxation modes collectively interacting (interactive coupling) and relate it to the thermodynamic properties of the amorphous phase. Understands the results of depolarization in terms of the new physics of polymer interactions: the Dual-Phase model, here applied to the dipoles-space charge dynamics. Provides a roaster of CASE STUDIES: practical applications of the TSD and TWD characterization techniques to describe coupled molecular motions in resins, medical tissues, wood, blends and block copolymers interfaces, rubbers, can coatings, internal stress in molded parts, etc
"Flow Analysis: A Practical Guide "reviews flow techniques for automating chemical analysis with the goal of increasing efficiency and producing better analytical results. Various applications for flow techniques are reviewed including industrial process monitoring (for example, foods and beverages, drugs and pharmaceuticals); as well as agricultural, life science, radioactivity, and environmental analysis with an emphasis on the latter. This book is a valuable resource for young scientists or
graduate-level students who want to learn how to introduce flow
techniques into their experiments, and for experts who need
specific and technical details to develop complete experimental
systems.
Chapters collected from "The Virtual Conference on Chemistry and its Applications (VCCA-2021) - Research and Innovations in Chemical Sciences: Paving the Way Forward". This conference was held in August 2021 and organized by the Computational Chemistry Group of the University of Mauritius. These peer-reviewed chapters offer insights into research on fundamental and applied chemistry with interdisciplinary subject matter.
The book aims to the description of recent progress in studies of light absorption and scattering in turbid media. In particular, light scattering/oceanic optics/snow optics research community will greatly benefit from the publication of this book.
"Laboratory Statistics: Handbook of Formulas and Terms" presents
common strategies for comparing and evaluating numerical laboratory
data. In particular, the text deals with the type of data and
problems thatlaboratory scientists and students in analytical
chemistry, clinical chemistry, epidemiology, and clinical research
face on a daily basis. This book takes the mystery out of
statistics and provides simple, hands-on instructions in the format
of everyday formulas. As far as possible, spreadsheet shortcuts and
functions are included, along with many simple worked examples.
This book isa must-have guide to applied statistics in the lab that
will result in improved experimental design and analysis.
Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences brings together two very important fields in pharmaceutical sciences that have been mostly seen as diverging from each other: chemoinformatics and bioinformatics. As developing drugs is an expensive and lengthy process, technology can improve the cost, efficiency and speed at which new drugs can be discovered and tested. This book presents some of the growing advancements of technology in the field of drug development and how the computational approaches explained here can reduce the financial and experimental burden of the drug discovery process. This book will be useful to pharmaceutical science researchers and students who need basic knowledge of computational techniques relevant to their projects. Bioscientists, bioinformaticians, computational scientists, and other stakeholders from industry and academia will also find this book helpful.
Recent advances in infrared molecular spectroscopy have resulted
in sophisticated theoretical and laboratory methods that are
difficult to grasp without a solid understanding of the basic
principles and underlying theory of vibration-rotation absorption
spectroscopy. "Rotational Structure in Molecular Infrared Spectra"
fills the gap between these recent, complex topics and the most
elementary methods in the field of rotational structure in the
infrared spectra of gaseous molecules. There is an increasing need
for people with the skills and knowledge to interpret
vibration-rotation spectra in many scientific disciplines,
including applications in atmospheric and planetary research.
Consequently, the basic principles of vibration-rotation absorption
spectroscopy are addressed for contemporary applications. In
addition to covering operational quantum mechanical methods,
spherical tensor algebra, and group theoretical methods applied to
molecular symmetry, attention is also given to phase conventions
and their effects on the values of matrix elements. Designed for
researchers and PhD students involved in the interpretation of
vibration-rotation spectra, the book intentionally separates basic
theoretical arguments (in the appendices), allowing readers who are
mainly concerned with applications to skip the principles while at
the same time providing a sound theoretical basis for readers who
are looking for more foundational information. - Reviews basic theory and contemporary methods of vibration rotation absorption spectroscopy, including operational quantum mechanical methods, spherical tensor algebra, and group theoretical methods applied to molecular symmetry - Covers sophisticated mathematical topics in simple, easy-to-read language - Discusses methods and applications separately from basic theoretical arguments for quick reference
The progress in nuclear magnetic resonance (NMR) spectroscopy that took place during the last several decades is observed in both experimental capabilities and theoretical approaches to study the spectral parameters. The scope of NMR spectroscopy for studying a large series of molecular problems has notably broadened. However, at the same time, it requires specialists to fully use its potentialities. This is a notorious problem and it is reflected in the current literature where this spectroscopy is typically only used in a routine way. Also, it is seldom used in several disciplines in which it could be a powerful tool to study many problems. The main aim of this book is to try to help reverse these trends. This book is divided in three parts dealing with 1)
high-resolution NMR parameters; 2) methods for understanding
high-resolution NMR parameters; and 3) some experimental aspects of
high-resolution NMR parameters for studying molecular structures.
Each part is divided into chapters written by different specialists
who use different methodologies in their work. In turn, each
chapter is divided into sections. Some features of the different
sections are highlighted: it is expected that part of the
readership will be interested only in the basic aspects of some
chapters, while other readers will be interested in deepening their
understanding of the subject dealt with in them. Contributions by specialists who use the discussed methodologies in their everyday work
The issues related to food science and authentication are of particular importance for researchers, consumers and regulatory entities. The need to guarantee quality foodstuff - where the word "quality" encompasses many different meanings, including e.g. nutritional value, safety of use, absence of alteration and adulterations, genuineness, typicalness, etc. - has led researchers to look for increasingly effective tools to investigate and deal with food chemistry problems. As even the simplest food is a complex matrix, the way to investigate its chemistry cannot be other than multivariate. Therefore, chemometrics is a necessary and powerful tool for the field of food analysis and control. For food science in general and food analysis and control in particular, there are several problems for which chemometrics are of utmost importance. Traceability, i.e. the possibility of verifying the animal/botanical, geographical and/or productive origin of a foodstuff, is, for instance, one area where the use of chemometric techniques is not only recommended but essential: indeed, at present no specific chemical and/or physico-chemical markers have been identified that can be univocally linked to the origin of a foodstuff and the only way of obtaining reliable traceability is by means of multivariate classification applied to experimental fingerprinting results. Anotherarea where chemometrics is of particular importance is in building the bridge between consumer preferences, sensory attributes and molecular profiling of food: by identifying latent structures among the data tables, bilinear modeling techniques (such as PCA, MCR, PLS and its various evolutions) can provide an interpretable and reliable connection among these domains. Other problems include process control and monitoring, the possibility of using RGB or hyperspectral imaging techniques to nondestructively check food quality, calibration of multidimensional or hyphenated instruments etc. "
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
This book comprises the proceedings of the 12th International Conference on Asia-Pacific Microscopy Conference (APMC12) focusing on emerging opportunities and challenges in the field of materials sciences, life sciences and microscopy techniques. The contents of this volume include papers on aberration corrected TEM & STEM, SEM - FIB, ion beam microscopy, electron diffraction & crystallography, microscopy and imaging associated with bio-nanotechnology, medical applications, host-pathogen interaction, etc. This book will be beneficial to researchers, educators, and practitioners alike.
This book covers a wide range of topics related to functional dyes, from synthesis and functionality to application. Making a survey of recent progress in functional dye chemistry, it provides an opportunity not only to understand the structure-property relationships of a variety of functional dyes but also to know how they are applied in practical use, from electronic devices to biochemical analyses. From classic dyes such as cyanines, squaraines, porphyrins, phthalocyanines, and others to the newest functional -conjugation systems, various types of functional dyes are dealt with extensively in the book, focusing especially on the state of the art and the future. Readers will benefit greatly from the scientific context in which organic dyes and pigments are comprehensively explained on the basis of chemistry.
This book provides easy-to-understand explanations to systematically and comprehensively describe the X-ray CT technologies, techniques, and skills used for industrial and scientific purposes. Included are many references along with photographs, figures, and equations prepared by the author. These features all facilitate the reader's gaining a deeper understanding of the topics being discussed. The book presents expertise not only on fundamentals but also about hardware, software, and analytical methods for the benefit of technical users. The book targets engineers, researchers, and students who are involved in research, development, design, and quality assurance in industry and academia.
The collection focuses on the advancements of characterization of minerals, metals, and materials and the applications of characterization results on the processing of these materials. Advanced characterization methods, techniques, and new instruments are emphasized. Areas of interest include, but are not limited to: * Novel methods and techniques for characterizing materials across a spectrum of systems and processes. * Characterization of mechanical, thermal, electrical, optical, dielectric, magnetic, physical, and other properties of materials. * Characterization of structural, morphological, and topographical natures of materials at micro- and nano- scales. * Characterization of extraction and processing including process development and analysis. * Advances in instrument developments for microstructure analysis and performance evaluation of materials, such as computer tomography (CT), X-ray and neutron diffraction, electron microscopy (SEM, FIB, TEM), and spectroscopy (EDS, WDS, EBSD) techniques. * 2D and 3D modelling for materials characterization. The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials.
The third edition of this popular problem-solving guide for this
widely-used method includes eleven completely new examples
and
Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-Based Approach, Second Edition, is a primary text for a course in two-dimensional (2-D) nuclear magnetic resonance (NMR) techniques, with the goal to learn to identify organic molecular structure. It presents strategies for assigning resonances to known structures and for deducing structures of unknown organic molecules based on their NMR spectra. The book begins with a discussion of the NMR technique, while subsequent chapters cover instrumental considerations; data collection, processing, and plotting; chemical shifts; symmetry and topicity; through-bond effects; and through-space effects. The book also covers molecular dynamics; strategies for assigning resonances to atoms within a molecule; strategies for elucidating unknown molecular structures; simple and complex assignment problems; and simple and complex unknown problems. Each chapter includes problems that will enable readers to test their understanding of the material discussed. The book contains 30 known and 30 unknown structure determination problems. It also features a supporting website from which instructors can download the structures of the unknowns in selected chapters, digital versions of all figures, and raw data sets for processing. This book will stand as a single source to which instructors and students can go to obtain a comprehensive compendium of NMR problems of varying difficulty. |
![]() ![]() You may like...
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R61,726
Discovery Miles 617 260
Assessing Transformation Products of…
Joerg E. Drewes, Thomas Letzel
Hardcover
R5,017
Discovery Miles 50 170
Electrochemistry of Dihydroxybenzene…
Hanieh Ghadimi, Sulaiman Ab Ghani, …
Paperback
R1,256
Discovery Miles 12 560
Handbook of Thermal Analysis and…
Sergey Vyazovkin, Nobuyoshi Koga, …
Paperback
Fundamentals of Analytical Chemistry
Stanley Crouch, Douglas Skoog, …
Hardcover
Advances in the Use of Liquid…
Achille Cappiello, Pierangela Palma
Hardcover
R6,587
Discovery Miles 65 870
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R5,018
Discovery Miles 50 180
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,168
Discovery Miles 41 680
|