![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry
Basic Laboratory Methods for Biotechnology, Third Edition is a versatile textbook that provides students with a solid foundation to pursue employment in the biotech industry and can later serve as a practical reference to ensure success at each stage in their career. The authors focus on basic principles and methods while skillfully including recent innovations and industry trends throughout. Fundamental laboratory skills are emphasized, and boxed content provides step by step laboratory method instructions for ease of reference at any point in the students' progress. Worked through examples and practice problems and solutions assist student comprehension. Coverage includes safety practices and instructions on using common laboratory instruments. Key Features: Provides a valuable reference for laboratory professionals at all stages of their careers. Focuses on basic principles and methods to provide students with the knowledge needed to begin a career in the Biotechnology industry. Describes fundamental laboratory skills. Includes laboratory scenario-based questions that require students to write or discuss their answers to ensure they have mastered the chapter content. Updates reflect recent innovations and regulatory requirements to ensure students stay up to date. Tables, a detailed glossary, practice problems and solutions, case studies and anecdotes provide students with the tools needed to master the content. To succeed in the lab, it is crucial to be comfortable with the math calculations that are part of everyday work. This accessible introduction to common laboratory techniques focuses on the basics, helping even readers with good math skills to practice the most frequently encountered types of problems. Basic Laboratory Calculations for Biotechnology, Second Edition discusses very common laboratory problems, all applied to real situations. It explores multiple strategies for solving problems for a better understanding of the underlying math. Primarily organized around laboratory applications, the book begins with more general topics and moves into more specific biotechnology laboratory techniques at the end. This book features hundreds of practice problems, all with solutions and many with boxed, complete explanations; plus hundreds of "story problems" relating to real situations in the lab. Additional features include: Discusses common laboratory problems with all material applied to real situations Presents multiple strategies for solving problems help students to better understand the underlying math Provides hundreds of practice problems and their solutions Enables students to complete the material in a self-paced course structure with little teacher assistance Includes hundreds of "story problems"that relate to real situations encountered in the laboratory
The participation in interlaboratory studies and the use of
Certified Reference Materials (CRMs) are widely recognised tools
for the verification of the accuracy of analytical measurements and
they form an integral part of quality control systems used by many
laboratories, e.g. in accreditation schemes. As a response to the
need to improve the quality of environmental analysis, the European
Commission has been active in the past fifteen years, through BCR
activity (now renamed Standards, Measurements and Testing
Programme) in the organisation of series of interlaboratory studies
involving expert laboratories in various analytical fields
(inorganic, trace organic and speciation analysis applied to a wide
variety of environmental matrices). The BCR and its successor have
the task of helping European laboratories to improve the quality of
measurements in analytical sectors which are vital for the European
Union (biomedical, agriculture, food, environment and industry);
these are most often carried out in support of EC regulations,
industrial needs, trade, monitoring activities (including
environment, agriculture, health and safety) and, more generally,
when technical difficulties hamper a good comparability of data
among EC laboratories. The collaborative projects carried out so
far have placed the BCR in the position of second world CRM
producer (after NIST in the USA). "Interlaboratory Studies and Certification of Reference
Materials for Environmental Analysis" gives an account of the
importance of reference materials for the quality control of
environmental analysis and describes in detail the procedures
followed by BCR to prepare environmental reference materials,
including aspects related to sampling, stabilization,
homogenisation, homogeneity and stability testing, establishment of
reference (or certified) values, and use of reference materials.
Examples of environmental CRMs produced by BCR within the last 15
years are given, which represent more than 70 CRMs covering
different types of materials (plants, biological materials, waters,
sediments, soils and sludges, coals, ash and dust materials)
certified for a range of chemical parameters (major and trace
elements, chemical species, PAHs, PCBs, pesticides and
dioxins). The final section of the book describes how to organise
improvement schemes for the evaluation method and/or laboratory
performance. Examples of interlaboratory studies (learning scheme,
proficiency testing and intercomparison in support to prenormative
research) are also given.
This book focuses on the topological fermion condensation quantum phase transition (FCQPT), a phenomenon that reveals the complex behavior of all strongly correlated Fermi systems, such as heavy fermion metals, quantum spin liquids, quasicrystals, and two-dimensional systems, considering these as a new state of matter. The book combines theoretical evaluations with arguments based on experimental grounds demonstrating that the entirety of very different strongly correlated Fermi systems demonstrates a universal behavior induced by FCQPT. In contrast to the conventional quantum phase transition, whose physics in the quantum critical region are dominated by thermal or quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT are controlled by a system of quasiparticles resembling the Landau quasiparticles. The book discusses the modification of strongly correlated systems under the action of FCQPT, representing the "missing" instability, which paves the way for developing an entirely new approach to condensed matter theory; and presents this physics as a new method for studying many-body objects. Based on the authors' own theoretical investigations, as well as salient theoretical and experimental studies conducted by others, the book is well suited for both students and researchers in the field of condensed matter physics.
In this book, the author provides expert analysis on naturally occurring iridoids, their chemistry and their distribution in plants and insects. Particular attention is given to the pharmacology of iridoids and their prospective applications in pharmaceutical and agricultural industries. Iridoids are found in a wide variety of plants and some insects, and they are structurally derived from monoterpenoid natural products. In the first two chapters of this book, the author describes the iridoids classification, occurrence and distribution in plants and insects. The following chapters cover different chromatographic and spectroscopic techniques that can be used to identify and quantify iridoids in herbal formulations, and also the biosynthesis of iridoids, in which the reader will discover a metabolomics and transcriptomics analysis to identify the genes involved in the biosynthesis. The final chapters provide insights on several pharmacological activities of iridoids, their physiological role in insects, pharmacokinetics in mammals, insects and microorganisms, and their applications in medicine and agriculture. This book will engage students and researchers interested in the chemistry of natural products, and it will also appeal to medicinal chemists and practitioners working in the design of new herbal drugs with bioactive pure iridoids.
The different LC-MS techniques available today were developed to
suit specific analytical needs and the application range covered by
each one is wide, but still limited. GC amenable compounds can be
all analyzed with a single GC-MS system whereas HPLC applications
call for specific LC-MS instrumental arrangements. ESI, APCI, APPI,
and EI are ionization techniques that can be combined with
different analyzers, in single or tandem configuration, to create
the ultimate system for a certain application. Once approaching
LC-MS for a specific need, the fast technical evolution and the
variegated commercial offer can induce confusion in the potential
user.
This is the first book covering an interdisciplinary field between microwave spectroscopy of electron paramagnetic resonance (EPR) or electron spin resonance (ESR) and chronology science, radiation dosimetry and ESR (EPR) imaging in material sciences. The main object is to determine the elapsed time with ESR from forensic medicine to the age and radiation dose in earth and space science. This book is written primarily for earth scientists as well as for archaeologists and for physicists and chemists interested in new applications of the method. This book can serve as an undergraduate and graduate school textbook on applications of ESR to geological and archaeological dating, radiation dosimetry and microscopic magnetic resonance imaging (MRI). Introduction to ESR and chronology science and principle of ESR dating and dosimetry are described with applications to actual problems according to materials.
UV-Visible Spectrophotometry of Water and Wastewater, Second Edition, represents an update to the first book dedicated to the use of UV spectrophotometry for water and wastewater quality monitoring. Using practical examples, the book illustrates how this technique can be a source of new methods of characterization and measurement. Easy and fast to run, this simple and robust analytical technique must be considered as one of the best ways to obtain a quantitative estimation of specific or aggregate parameters (e.g., Nitrate, TOC) and simultaneously qualitative information on the global composition of water and its variation. This second edition presents the current methods and applications for water quality monitoring based on UV spectra, including the most recent works and developments. After the introduction of the basics for UV spectrophotometry understanding, the applications of UV measurement are presented, both from the family of chemicals and water quality parameters and from the type of water. Writing from years of experience in the development and applications of UV systems and from scientific and technical works, the authors provide several useful examples showing the great interest of UV spectrophotometry for water quality monitoring. At the end of the book, the UV spectra library of the first edition is updated with dozens of new chemicals of interest.
This volume compiles and discusses the fundamental and multidisciplinary knowledge on adsorption and separation processes using zeolites as adsorbents. Over the last decade, a large amount of research has been carried out for the development of zeolites as adsorbents. However, there is still a growing interest to increase the understanding of such selective adsorbents. Therefore, synthesis strategies and new approaches for developing new selective zeolite adsorbents for gas separation are presented in the first chapter. In addition, a chapter focused on adsorption characterization techniques of microporous materials is included. This will be helpful for advanced readers, since the new IUPAC recommendations for microporous characterization are not still widely employed by the zeolite community. Experimental and theoretical aspects of economically and environmentally relevant separations, which have been successfully carried out with zeolites, are discussed in detail in subsequent chapters. Finally, industrial zeolite based adsorption and separation processes as well as current perspectives for new zeolite based separations, and improvements of current technologies are presented.
This book outlines the current status of the environment in the Republic of Adygea in Russia. The book assesses the environmental conditions, ecological state, climate and vegetation change, anthropogenic loads to soil, water and atmosphere as well as highlighting the potential of water resources, renewable energy and development of tourism, agriculture and industry in this region. It also presents the mechanisms of legal, ecological and economic regulation and environmental insurance in the Republic of Adygea. This book introduces the Republic of Adygea to readers who are not familiar with the Republic and its beautiful landscapes, history and people. It offers a valuable source of information for a broad readership, from students and scientists interested in environmental sciences, to policymakers and practitioners working in the fields of environmental policy and management.
Correlative Light and Electron Microscopy III, Volume 140, a new volume in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics discussed in this new release include Millisecond time-resolved CLEM, Super resolution LM und SEM of high-pressure frozen C. elegans, Preservation fluorescence, super res CLEM, APEX in Tissue, Corrsight mit IBIDI flowthrough chamber, Correlative Light Atomic Force Electronic Microscopy (CLAFEM), Atmospheric EM CLEM, and High-precision correlation, amongst other topics. Chapters in this ongoing series deal with different approaches for analyzing the same specimen using more than one imaging technique. The strengths and application area of each is presented, with this volume exploring the aspects of sample preparation of diverse biological systems for different CLEM approaches.
This book offers comprehensive information on the developments and applications of the solid phase microextraction (SPME) technique. The first part of the book briefly introduces readers to the fundamentals of SPME, while subsequent sections describe the applications of SPME technique in detail, including environmental analysis (air, water, soil/sediments), food analysis (volatile/nonvolatile compounds), and bioanalysis (plants, animal tissues, body fluids). The advantages and future challenges of the SPME technique are also discussed. Including recent research advances and further developments of SPME, the book offers a practical reference guide and a valuable resource for researchers and users of SPME techniques. The target audience includes analytical chemists, environmental scientists, biological scientists, material scientists, and analysts, as well as students at universities/institutes in related fields. Dr. Gangfeng Ouyang is a Professor at the School of Chemistry and Chemical Engineering, Sun Yat-sen University, China. Dr. Ruifen Jiang is an Associate Professor at the School of Environment, Jinan University, China.
Assuming only background knowledge of algebra and elementary
calculus, and access to a modern personal computer, Nonlinear
Computer Modeling of Chemical and Biochemical Data presents the
fundamental basis and procedures of data modeling by computer using
nonlinear regression analysis. Bypassing the need for intermediary
analytical stages, this method allows for rapid analysis of highly
complex processes, thereby enabling reliable information to be
extracted from raw experimental data.
Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.
This book is intended to provide a course of infrared spectroscopy for quantitative analysis, covering both bulk matter and surface/interface analyses. Although the technology of Fourier transform infrared (FT-IR) spectroscopy was established many years ago, the full potential of infrared spectroscopy has not been properly recognized, and its intrinsic potential is still put aside. FT-IR has outstandingly useful characteristics, however, represented by the high sensitivity for monolayer analysis, highly reliable quantitativity, and reproducibility, which are quite suitable for surface and interface analysis. Because infrared spectroscopy provides rich chemical information-for example, hydrogen bonding, molecular conformation, orientation, aggregation, and crystallinity-FT-IR should be the first choice of chemical analysis in a laboratory. In this book, various analytical techniques and basic knowledge of infrared spectroscopy are described in a uniform manner. In particular, techniques for quantitative understanding are particularly focused for the reader's convenience.
This thesis reports on essential experimental work in the field of novel two-dimensional (2D) atomic crystals beyond graphene. It especially describes three new 2D crystal materials, namely germanene, hafnene, and monolayer PtSe2 fabricated experimentally for the first time, using an ultra-high vacuum molecular beam epitaxy (UHV-MBE) system. Multiple characterization techniques, including scanning tunneling microscope (STM), low energy electron diffraction (LEED), scanning transmission electron microscope (STEM), and angle-resolved photoemission spectroscopy (ARPES), combined with theoretical studies reveal the materials' atomic and electronic structures, which allows the author to further investigate their physical properties and potential applications. In addition, a new epitaxial growth method for transition metal dichalcogenides involving direct selenization of metal supports is developed. These studies represent a significant step forward in expanding the family of 2D crystal materials and exploring their application potentials in future nanotechnology and related areas.
This thesis focuses on nonlinear spectroscopy from a quantum optics perspective. First, it provides a detailed introduction to nonlinear optical signals; starting from Glauber's photon counting formalism, it establishes the diagrammatic formulation, which forms the backbone of nonlinear molecular spectroscopy. The main body of the thesis investigates the impact of quantum correlations in entangled photon states on two-photon transitions, with a particular focus on the time-energy uncertainty, which restricts the possible simultaneous time and frequency resolution in measurements. It found that this can be violated with entangled light for individual transitions. The thesis then presents simulations of possible experimental setups that could exploit this quantum advantage. The final chapter is devoted to an application of the rapidly growing field of multidimensional spectroscopy to trapped ion chains, where it is employed to investigate nonequilibrium properties in quantum simulations.
This book describes the development of three dimensional electroactive fibres using a novel coaxial wet-spinning approach from organic conductors in combination with non-conducting hydrogel polymers. This book also presents the characterization and evaluation of multiaxial biofibres in terms of mechanical, physical, electrochemical and biological properties, and explores their use in a diverse range of applications including implantable electrodes, drug delivery systems and energy-storage systems. In the first chapter, the author highlights the significance of engineering three dimensional fibres, introduces the involved hydrogels and organic conductors with emphasis on their biomedical application, and collects some of the previously established methods for fabrication of biofibres. In the second chapter, particular attention is given to the overall experimental fabrication methods and characterization analyses conducted in the work. Chapters three to five present the main findings of this work, in which readers will discover how novel hybrid hydrogel fibres with an inner core of chitosan and alginate were prepared and characterized, how graphene was incorporated into coaxial wet-spun biofibres, and how one-dimensional triaxial fibres were developed using a novel coaxial wet-spinning fibre production method and applied as potential battery devices. In the final chapter of this work, the author summarizes the main achievements of the work and outlines some recommendations for future research.
Low Grade Heat Driven Multi-effect Distillation and Desalination describes the development of advanced multi-effect evaporation technologies that are driven by low grade sensible heat, including process waste heat in refineries, heat rejection from diesel generators or microturbines, and solar and geothermal energy. The technologies discussed can be applied to desalination in remote areas, purifying produced water in oil-and-gas industries, and to re-concentrate process liquor in refineries. This book is ideal for researchers, engineering scientists, graduate students, and industrial practitioners working in the desalination, petrochemical, and mineral refining sectors, helping them further understand the technologies and opportunities that relate to their respective industries. For researchers and graduate students, the core enabling ideas in the book will provide insights and open up new horizons in thermal engineering.
Applications of High Resolution Mass Spectrometry: Food Safety and Pesticide Residue Analysis is the first book to offer complete coverage of all aspects of high resolution mass spectrometry (HRMS) used for the analysis of pesticide residue in food. Aimed at researchers and graduate students in food safety, toxicology, and analytical chemistry, the book equips readers with foundational knowledge of HRMS, including established and state-of-the-art principles and analysis strategies. Additionally, it provides a roadmap for implementation, including discussions of the latest instrumentation and software available. Detailed coverage is given to the application of HRMS coupled to ultra high-performance liquid chromatography (UHPLC-HRMS) in the analysis of pesticide residue in fruits and vegetables and food from animal origin. The book also discusses extraction procedures and the challenges of sample preparation, gas chromatography coupled to high resolution mass spectrometry, flow injection-HRMS, ambient ionization, and identification of pesticide transformation products in food. Responding to the fast development and application of these new procedures, this book is an essential resource in the food safety field.
During the past decade, monolithic materials in the shape of discs,
stacked layers, rolled sheets, sponges, irregular chunks, tubes,
and cylinders have all been successfully demonstrated. These
formats were prepared from a wide variety of materials including
natural polymers such as cellulose, synthetic polymers that
involved porous styrene-, methacrylate-, and acrylamide-based
polymers, and inorganic materials, mainly silica. Each approach is
interesting from the point of view of both preparation and
application.
This book presents fundamental experimental data and experiment-based theoretical conclusions on, as well as physico-chemical models of, the natural hydrothermal, metasomatic, metamorphic, magmatic and ore-producing processes in the Earth's crust, upper mantle, transition zone and lower mantle. The topics discussed concern the interactions of oil and aqueous fluids as revealed by aqueous-hydrocarbonic inclusions in synthetic quartz and applied to the natural evolution of oil; determining the solubility and inter-phase partitioning of trace and strategic elements and their components; and experimentally validating physico-chemical mechanisms in the ultrabasic-basic evolution of deep-mantle magmatic and diamond-forming systems. In addition, the book presents experimental studies on the physico-chemical properties of supercritical water and hydrothermal fluids, viscosity of acidic ultramafic magmatic materials melts, peculiarities of metamorphism in basic rocks, kinetics of mineral nucleation in silicate melts and hydrothermal solutions, and influence of complex H2O-CO2-HCl fluids on melting relations in mantle-crust rocks, together with novel results and conclusions. Given its scope, the book will be of great interest to all Earth scientists, lecturers and students specialized in experimental and genetic mineralogy, petrology and geochemistry.
Membrane Characterization provides a valuable source of information on how membranes are characterized, an extremely limited field that is confined to only brief descriptions in various technical papers available online. For the first time, readers will be able to understand the importance of membrane characterization, the techniques required, and the fundamental theory behind them. This book focuses on characterization techniques that are normally used for membranes prepared from polymeric, ceramic, and composite materials. |
![]() ![]() You may like...
Long Noncoding RNAs in Plants - Roles in…
Santosh Kumar Upadhyay
Paperback
R4,236
Discovery Miles 42 360
|