![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This thesis demonstrates that an ultralow temperature refrigeration technique called "demagnetisation refrigeration" can be miniaturised and incorporated onto millimeter-sized chips to cool nanoelectronic circuits, devices and materials. Until recently, the lowest temperature ever reached in such systems was around 4 millikelvin. Here, a temperature of 1.2mK is reported in a nanoelectronic device. The thesis introduces the idea that on-chip demagnetization refrigeration can be used to cool a wide variety of nanostructures and devices to microkelvin temperatures. This brings the exciting possibility of discovering new physics, such as exotic electronic phases, in an unexplored regime and the potential to improve the performance of existing applications, including solid-state quantum technologies. Since the first demonstration of on-chip demagnetization refrigeration, described here, the technique has been taken up by other research groups around the world. The lowest on-chip temperature is currently 0.4mK. Work is now underway to adapt the technique to cool other materials and devices, ultimately leading to a platform to study nanoscale materials, devices and circuits at microkelvin temperatures.
Within the last 30 years, electron energy-loss spectroscopy (EELS) has become a standard analytical technique used in the transmission electron microscope to extract chemical and structural information down to the atomic level. In two previous editions, "Electron Energy-Loss Spectroscopy in the Electron Microscope" has become the standard reference guide to the instrumentation, physics and procedures involved, and the kind of results obtainable. Within the last few years, the commercial availability of lens-aberration correctors and electron-beam monochromators has further increased the spatial and energy resolution of EELS. This thoroughly updated and revised Third Edition incorporates these new developments, as well as advances in electron-scattering theory, spectral and image processing, and recent applications in fields such as nanotechnology. The appendices now contain a listing of inelastic mean free paths and a description of more than 20 MATLAB programs for calculating EELS data.
Since the 1960s, x-ray fluorescence spectrometry (XRF), both wavelength and energy-dispersive have served as the workhorse for non-destructive and destructive analyses of archaeological materials. Recently eclipsed by other instrumentation such as LA-ICP-MS, XRF remains the mainstay of non-destructive chemical analyses in archaeology, particularly for volcanic rocks, and most particularly for obsidian. In a world where heritage and repatriation issues drive archaeological method and theory, XRF remains an important tool for understanding the human past, and will remain so for decades to come. Currently, there is no comprehensive book in XRF applications in archaeology at a time when the applications of portable XRF and desktop XRF instrumentation are exploding particularly in anthropology and archaeology departments worldwide. The contributors to this volumeare the experts in the field, and most are at the forefront of the newest applications of XRF to archaeological problems. Itcovers all relevant aspects of the field for thoseusing the newest XRF technologies to deal with very current issues in archaeology. "
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes." For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This book discusses the theoretical foundations of the structural modeling method applied to metamaterials. This method takes into account the parameters of the crystal lattice, the size of the medium particles, as well as their shape and constants of force interactions between them. It provides mathematical models of metamaterials that offer insights into the qualitative influence of the local structure on the effective elastic moduli of the considered medium and into performing theoretical estimations of these quantities. This book is useful for researchers working in the fields of solid mechanics, physical acoustics, and condensed matter physics, as well as for graduate and postgraduate students studying mathematical modeling methods.
Atomic Absorption Spectroscopy (AAS) is a well-established elemental analysis technology. It remains one of the most popular and cost-effective analysis tools used by chemists, physicists, and materials scientists worldwide. This second edition offers a concise introduction to AAS concepts, essential methodologies, and important applications. It has been comprehensively updated for the latest advances in AAS techniques and instruments. Highlights include: - Overviews of all basic atomic absorption concepts, including atomic line spectra theory, common sampling techniques, radiation sources, spectrometers, and detectors; - Coverage of hydride generation, cold vapor generation and electrothermal generation, as well as flow injection analysis (FIA) to enhance AAS analytical performance; - New sections on troubleshooting and quality control guidelines, chemometrics, and emerging fields of applications, including analysis of nanoparticles; and - Selected examples of standards for chemical analysis.
My Way to Lithium-Ion Batteries Yoshio Nishi I have been engaged in research and development (R&D) on novel materials for electronic appliances for 40 years since I joined Sony Corporation in 1966. I started my scientific career in Sony as a researcher of zinc-air batteries. After 8 years in R&D on electrochemistry, my research field was shifted against my will to el- troacoustic materials, specifically diaphragm materials for electroacoustic tra- ducers including loudspeakers, headphones, and microphones. My R&D work also extended to cabinet materials for speaker systems. This about-face was uncomfo- able for me at first, but it forced me to devote myself to the investigation of various classes of materials unfamiliar to me, covering pulp and paper, metals (i. e. , Ti, Al, Be), ceramics (B4C, TiN, BN, SiC), carbonaceous materials (carbon fibers, intr- sic carbon, artificial diamond), reinforcing fibers for FRP (carbon fibers, aromatic polyamide fibers, glass fibers, SiC fibers, superdrawn polyethylene fibers), organic polymers (polyamides, polyethylene, polypropylene, polymethylpentene, poly- ides, polysulfones, polyetherimides, polyethersulfones, PET), boards (plywood, particle board), resin composites (bulk molding compounds, resin concretes, arti- cial marble), and so on. I also was engaged in development of piezoelectric lo- speakers employing poly(vinylidene difluoride) (PVdF). The remarkably successful output from my R&D activities in those days were organic polymer whiskers and bacterial cellulose. The former was the first organic whisker in the world disc- ered by M. Iguchi,1 which is composed of polyoxymethylene (POM).
"Mulilayer Integrated Film Bulk Acoustic Resonators" mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang s research group."
The field of protein NMR spectroscopy has rapidly expanded into new areas of biochemistry, molecular biology and cell biology research that were impossible to study as recently as ten years ago. This third edition of Protein NMR Techniques, expands upon the previous editions with current, detailed authoritative but down-to-earth descriptions of new methodologies. These include techniques for NMR sample preparation, solution and solid state NMR methodologies and data processing. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Protein NMR Techniques,Third Edition, seeks to aid scientists in understanding the latest innovations in the field of protein NMR.
"Photoelectrochemical Hydrogen Production" describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.
This thesis identifies the turning point in chain length, after which alkanes self-solvate into a folded structure instead of an extended stretched conformation. After this turning point, London dispersion forces rearrange isolated n-alkanes into a particular hairpin-structure, while for shorter chain lengths, a simple stretched conformation is energetically preferred. This thesis can locate the experimental turning point for the first time in an interaction-free manner from measurements of unbranched alkanes at low temperatures in supersonic jet expansions. It contains a detailed analysis of the vibrational Raman spectra of the chain molecules, which is supported by comprehensive quantum chemical simulations. In this way, the detailed balance between inter-chain attraction and conformational flexibility can be quantified. The investigations are complemented by measurements of perfluoroalkanes and similarities and differences between the compounds are discussed. Furthermore, Nils Luttschwager determines the stiffnesses (elastic moduli) of two of the most common industrial polymers: polyethylene and polytetrafluorethylene. He uses in this thesis a sophisticated extrapolation to calculate this value from quantities of their building blocks, showing that the single polymer molecules can be as stiff as a rod of steel.
The invention of scanning tunneling microscopy (STM) in 1981 [1] and later atomicforcemicroscopy(AFM)in1986[2]facilitatedbreakthroughsinvarious disciplinesofsciencesuchaschemistry,physicsandbiology,andtrulyboosted the development of nanoscience and nanotechnology. These two techniques made it possible to achieve a detailed understa- ing of chemical and biological systems as well as phenomena across multiple lengthscales, and in particular downto thesub-nanometer scale. In fact STM and AFM are not simply microscopy tools, but they are also extremely useful techniques tochemistand biochemists. Forexample AFMandSTMoffers- theticchemiststhechancetoobservethemoleculestheyhavesynthesized,how theymoveand dance onasurface,howtheyrecognizeand communicate with each other, thus making it possible to cast new light onto the molecular int- actions[3]. Alongsidetheircapabilityofgeneratingartisticthree-dimensional pictures with nanoscale resolution, they also allowed the study of molecular based architectures beyond imaging, providing quantitative insight into va- ous physico-chemical properties [4] For instance, by manipulating molecules individually it is possible to bestow information onto their mechanical pr- erties andtoperformconstructionsonthenanoscale. In thelastfewyears the application of AFM and STM to study molecular systems in various envir- ments (e. g. , liquid, gas, vacuum) is paving the way towards the unraveling of complex characteristics and phenomena of nanostructured (bio)systems. Inthisvolumewehaveselected afewofthemostrelevantexamplesofAFM and STM based experiments on (bio)molecular based systems, which offer not only a close look into the nanoworld but also provide quantitative insight into various properties of molecular and polymeric systems, and ultimately highlight some technologicallyrelevant applications. I was delighted and felt privileged to work with an outstanding group of contributingauthors:Itrulythankthemforalltheirefforts. Iamalsograteful to Dr. Marion Hertel and Birgit Kollmar-Thoni for their invitation to edit this volume and for their assistance.
Fluorescence spectroscopy is a type of electromagnetic
spectroscopy, using a beam of light, which analyzes fluorescence
from a sample. Given its extremely high sensitivity and
selectivity, it is an important investigational tool in many areas
including material sciences, analytical sciences, and across a
broad range of chemical, biochemical and medical research. It has
become an essential investigational technique allowing detailed,
real-time observation of the structure and dynamics of intact
biological systems. The pharmaceutical industry uses it heavily and
it has become a dominating technique in biochemistry and molecular
genetics.
This book presents an Ultrafast Low-Energy Electron Diffraction (ULEED) system that reveals ultrafast structural changes on the atomic scale. The achievable temporal resolution in the low-energy regime is improved by several orders of magnitude and has enabled the melting of a highly-sensitive, molecularly thin layer of a polymer crystal to be resolved for the first time. This new experimental approach permits time-resolved structural investigations of systems that were previously partially or totally inaccessible, including surfaces, interfaces and atomically thin films. It will be of fundamental importance for understanding the properties of nanomaterials so as to tailor their properties.
The role of laboratory research and simulations in advancing our understanding of solar system ices (including satellites, KBOs, comets, and giant planets) is becoming increasingly important. Understanding ice surface radiation processing, particle and radiation penetration depths, surface and subsurface chemistry, morphology, phases, density, conductivity, etc., are only a few examples of the inventory of issues that are being addressed by Earth-based laboratory research. As a response to the growing need for cross-disciplinary dialog and communication in the Planetary Ices science community, this book aims to achieve direct dialog and foster focused collaborations among the observational, modeling, and laboratory research communities.
This book, written by a pioneer in surface physics and thin film research and the inventor of Low Energy Electron Microscopy (LEEM), Spin-Polarized Low Energy Electron Microscopy (SPLEEM) and Spectroscopic Photo Emission and Low Energy Electron Microscopy (SPELEEM), covers these and other techniques for the imaging of surfaces with low energy (slow) electrons. These techniques include Photoemission Electron Microscopy (PEEM), X-ray Photoemission Electron Microscopy (XPEEM), and their combination with microdiffraction and microspectroscopy, all of which use cathode lenses and slow electrons. Of particular interest are the fundamentals and applications of LEEM, PEEM, and XPEEM because of their widespread use. Numerous illustrations will illuminate the fundamental aspects of the electron optics, the experimental setup, and particularly the application results with these instruments. Surface Microscopy with Low Energy Electrons will give the reader a unified picture of the imaging, diffraction, and spectroscopy methods that are possible using low energy electron microscopes.
This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gaspari-Gyorffy theories and a tabulation of the electron-ion interaction matrix elements. The evaluation of the Stoner criterion for ferromagnetism is examined and results are tabulated. This edition also contains two new appendices discussing the effects of spin-orbit interaction and a modified version of Harrison's tight-binding theory for metals which puts the theory on a quantitative basis.
This book surveys recent advances related to the application of single molecule techniques in various fields of science. The topics, each described by leading experts in the field, range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics. A unifying theme of all chapters is the power of single molecule techniques to unravel fluctuations and heterogeneities usually hidden in the ensemble average of complex systems. The concept for the book originated from a gathering of some of the world's leading scientists at the Nobel Conference in Sweden.
Chemical additives are used to enhance the properties of many industrial products. Since their release into the environment is a potential risk for man and nature, their fate and behavior have been investigated in the framework of the European Union-funded project RISKCYCLE. The results are presented in two volumes, Global Risk-Based Management of Chemical Additives I: Production, Usage and Environmental Occurrence and Global Risk-Based Management of Chemical Additives II: Risk-Based Assessment and Management Strategies. This book is the second of the two volumes and features two main parts. In the first part, experts in the field discuss different models related to the assessment of the potential risks posed by chemical additives and analyze their benefits and drawbacks. In the second part, specific case studies in which the models have been applied are presented and the reliability of the models is evaluated. This volume is an invaluable source of information for scientists and governmental agencies dealing with the risk assessment of chemicals on a global scale.
Much of what we know about atoms, molecules, and the nature of
matter has been obtained using spectroscopy over the last one
hundred years or so. In this book we have collected together twenty
chapters by eminent scientists from around the world to describe
their work at the cutting edge of molecular spectroscopy. These
chapters describe new methodology and applications, instrumental
developments, and theory which is taking spectroscopy into new
frontiers. The range of topics is broad. Lasers are utilized in
much of the research, but their applications range from
sub-femtosecond spectroscopy to the study of viruses and also to
the investigation of art and archeological artifacts. Three
chapters discuss work on biological systems and three others
represent laser physics. The recent advances in cavity ringdown
spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS),
two-dimensional correlation spectroscopy (2D-COS), and microwave
techniques are all covered. Chapters on electronic excited states,
molecular dynamics, symmetry applications, and neutron scattering
are also included and demonstrate the wide utility of spectroscopic
techniques.
This book is designed to be a central text for young graduate
students interested in mass spectrometry as it relates to study of
protein structure and function as well as proteomics.
In this thesis single-molecule fluorescence resonance energy transfer (FRET) spectroscopy was used to study the folding of a protein that belongs to the large and important family of repeat proteins. Cohen shows that the dynamics of the expanded conformations is likely to be very fast, suggesting a spring-like motion of the whole chain. The findings shed new light on the elasticity of structure in repeat proteins, which is related to their function in binding multiple and disparate partners. This concise research summary provides useful insights for students beginning a PhD in this or a related area, and researchers entering this field.
This book presents an overview of fundamental aspects of surface-based biosensors and techniques for enhancing their detection sensitivity and speed. It focuses on rapid detection using miniaturized sensors and describes the physical principles of nanoscale transducers, surface modifications, microfluidics and reaction engineering, diffusion and kinetics. A key challenge in the field of bioanalytical sensors is the rapid delivery of target biomolecules to the sensing surface. While various nanostructures have shown great promise in sensitive detection, diffusion-limited binding of analyte molecules remains a fundamental problem. Recently, many researchers have put forward novel schemes to overcome this challenge, such as nanopore channels, electrokinetics, and dielectrophoresis, to name but a few. This book provides the readers an up-to-date account on these technological advances. |
![]() ![]() You may like...
Expert System Techniques in Biomedical…
Prasant Kumar Pattnaik, Aleena Swetapadma, …
Hardcover
R5,496
Discovery Miles 54 960
Art and Archaeology - Collaborations…
Ian Alden Russell, Andrew Cochrane
Hardcover
R3,572
Discovery Miles 35 720
Smart STEM-Driven Computer Science…
Vytautas Stuikys, Renata Burbaite
Hardcover
R3,615
Discovery Miles 36 150
|