![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry
This volume is a collection of lectures presented during the 2009 International School on High-pressure Crystal- graphy, which took place at the Ettore Majorana Center for Scientific Culture, between June 4 and 14, 2009, in the very picturesque Sicilian town of Erice. st The 2009 school was the 41 course of the "International School of Cryst- lography" organized at the Majorana Center and was directed by Elena Figure 1. Audience, including local Boldyreva (Novosibirsk University) organizers (orange scarfs) and student and Przemyslaw Dera (University of participants during one of the lectures. Chicago). Unmatched support and excellent on-site organization was provided by the expert team consisting of Prof. Paola Spadon (Uniersity of Padova), Prof. Lodovico Riva di San Severino (University of Bologna), Elena Papinutto and Prof. John Irvin (University of California, San Franciso), aided by great team of young local organizers ("orange scarfs"). Major part of funding for the school was provided by a grant from the NATO Science for Peace and Security program, through which the 2009 Erice school was recognized as a NATO Advanced Study Institute (ASI).
This book presents an up-to-date overview of cathodoluminescence microscopy and spectroscopy in the field of geosciences. For a decade, no books have been dedicated to this topic. This volume includes new important data on cathodoluminescence spectroscopy, physical parameters and systematic spectral analysis of doped minerals. Each chapter, written by a well-known specialist, covers classic and new fields of application such as carbonate diagenesis, silicates, brittle deformation in sandstones, gemstone recognition, biomineralization, economic geology or geochronology. It will be useful to all scientists, graduate students and professional engineers throughout the geosciences community.
Organic Spectroscopy presents the derivation of structural information from UV, IR, Raman, 1H NMR, 13C NMR, Mass and ESR spectral data in such a way that stimulates interest of students and researchers alike. The application of spectroscopy for structure determination and analysis has seen phenomenal growth and is now an integral part of Organic Chemistry courses. This book provides: Organic Spectroscopy is an invaluable reference for the interpretation of various spectra. It can be used as a basic text for undergraduate and postgraduate students of spectroscopy as well as a practical resource by research chemists. The book will be of interest to chemists and analysts in academia and industry, especially those engaged in the synthesis and analysis of organic compounds including drugs, drug intermediates, agrochemicals, polymers and dyes.
Following the success of the first edition, this pioneering study of pharmaceuticals in the environment has been updated and greatly extended. It includes the status of research on pharmaceuticals in soil, with attention to terrestrial and aquatic environments as well as new substance categories such as tetracylines and chinolones and the latest results concerning contamination of the environment and risk reduction.
Modified Cyclodextrins for Chiral Separation offers a review of the latest advances in developing modified cyclodextrins as chiral selectors for various chromatographic and electromigration techniques. Over the years, many descriptions of chiral separation have appeared in academic journals and books, but most of them have been devoted to either the development of analytical methods and protocols or the summary of different chiral selectors, including cyclodextrins for chiral separation applications. This is in marked contrast to this volume which focuses on the research endeavors concerning the development of cyclodextrin derivatives specifically as either chiral mobile phases for capillary electrophoresis, or chiral stationary phases for various chromatographic techniques including gas chromatography, or high-performance liquid chromatography and supercritical fluid chromatography. The ongoing thread in this book is the synthesis of structurally-defined cyclodextrin derivatives and their applications in enantiomer separation by means of different analytical techniques. Modified Cyclodextrins for Chiral Separation is intended for those who are interested in expanding their knowledge of cyclodextrin chemistry and chiral separation, and in what cyclodextrin modification can be made to suit the needs of chiral selectors for different analytical techniques. It primarily focuses on the state-of-the-art cyclodextrin chemistry which is the basis for all chiral selectors used in these chiral separation techniques. Weihua Tang, PhD, is a professor at the Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, China. Siu-Choon Ng, PhD, is a professor at the Division of Chemical and Biomedical Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore. Dongping Sun, PhD, is a professor at the Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, China.
The application of nanotechnology in different consumer products has delivered new products with highly desirable properties, but at same time has opened a new window for a wide group of emerging contaminants and a new type of human exposure which needs to be assessed. Most of the current human toxicological information on
nanomaterials comes from nano-sized particles in air, and their
effects via inhalation. Other routes of human exposure, such as
water and food, and the effects on human health and the environment
have been less studied. It is the recent research in these areas
that is highlighted here in one of the first books covering the
analysis and ecotoxicological evaluation of nanomaterials in food
and the environment, with both matrices being of considerable
interest. In addition to providing a global summary of recent
research, this book shows how widely used chromatographic and
spectroscopic methods can be added to the analytical arsenal of
microscopic techniques that have commonly been used to characterize
nanomaterials.
This second edition of a successful and highly-accessed monograph has been extended by more than 100 pages. It includes an enlarged coverage of applications for materials characterization and analysis. Also a more detailed description of strategies for determining free energies of ion transfer between miscible liquids is provided. This is now possible with a "third-phase strategy" which the authors explain from theoretical and practical points of view. The book is still the only one detailing strategies for solid state electroanalysis. It also features the specific potential of the techniques to use immobilized particles (for studies of solid materials) and of immobilized droplets of immiscible liquids for the purpose of studying the three-phase electrochemistry of these liquids. This also includes studies of ion transfer between aqueous and immiscible non-aqueous liquids. The bibliography of all published papers in this field of research has been expanded from 318 to now 444 references in this second edition. Not only are pertinent references provided at the end of each chapter, but the complete list of the cited literature is also offered as a separate chapter for easy reference.
As mass spectrometric methods now offer a level of specificity and sensitivity unrealized by spectrophotometric- and immunoassay-based methods, mass spectrometry has entered the clinical laboratory where it is being used for a wide range of applications. In Clinical Applications of Mass Spectrometry: Methods and Protocols, expert researchers provide detailed step-by-step procedures for the analysis of number of analytes of clinical importance. This versatile and expansive volume covers mass spectrometry methods for analytes including a variety of drugs, hormones, and metabolic compounds spanning the disciplines of toxicology, therapeutic drug monitoring, endocrinology, and pediatric metabolism. Written in the highly successful Methods in Molecular BiologyT series format, chapters include brief introductions to the analytes, lists of the necessary materials and reagents, readily reproducible analytical protocols, and detailed notes on troubleshooting and avoiding known pitfalls. Comprehensive and dependable, Clinical Applications of Mass Spectrometry: Methods and Protocols offers its readers a wide array of valuable methods for experienced mass spectrometric labs that are looking to introduce new analyses as well as for those laboratories currently considering the addition of this resourceful and vital technology. Written for: Biochemists, laboratory scientists, pharmacologists, toxicologists, and endocrinologists
This book highlights the various topics in which luminescence and electrochemistry are intimately coupled. The topic of this book is clearly at the frontier between several scientific domains involving physics, chemistry and biology. Applications in these various fields naturally also need to be mentioned, especially concerning displays and advanced investigation techniques in analytical chemistry or for biomedical issues.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This book draws on the latest research to discuss the history and development of high-entropy alloys and ceramics in bulk, film, and fiber form. High-entropy materials have recently been developed using the entropy of mixing and entropy of configuration of materials, and have proven to exhibit unique properties superior to those of conventional materials. The field of high-entropy alloys was born in 2004, and has since been developed for both scientific and engineering applications. Although there is extensive literature, this field is rapidly transforming. This book highlights the cutting edge of high-entropy materials, including their fundamentals and applications. Above all, it reflects two major milestones in their development: the equi-atomic ratio single-phase high-entropy alloys; and the non-equi-atomic ratio dual-phase high-entropy alloys.
This book provides a comprehensive and systematic overview of the latest advances in nanomaterials for proteomics, both theoretical and practical. Consisting of seven chapters, it first covers the synthesis methods, characterization, principles, and performance of functional nanomaterials in various branches of proteomics in detail. This is followed by the applications of nanomaterials for the separation and analysis of various proteins and peptides. Given its scope, the book appeals to a broad readership, including those active in proteomics and materials science; it can also serve as a reference book for students majoring in proteomics analysis.
This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction - triboplasma - was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.
With the development in the 1960s of ultrahigh vacuum equipment and techniques and electron, X-ray, and ion beam techniques to determine the structure and composition of interfaces, activities in the field of surface science grew nearly exponentially. Today surface science impacts all major fields of study from physical to biological sciences, from physics to chemistry, and all engineering disciplines. The materials and phenomena characterized by surface science range from se- conductors, where the impact of surface science has been critical to progress, to metals and ceramics, where selected contributions have been important, to bio- terials, where contributions are just beginning to impact the field, to textiles, where the impact has been marginal. With such a range of fields and applications, questions about sample selection, preparation, treatment, and handling are difficult to cover completely in one review article or one chapter. Therefore, the editors of this book have assembled a range of experts with experience in the major fields impacted by surface characterization. It is the only book which treats the subject of sample handling, preparation, and treatment for surface characterization. It is full of tricks, cautions, and handy tips to make the laboratory scientist's life easier. With respect to organization of the book, the topics range from discussion of vacuum to discussion of biological, organic, elemental or compound samples, to samples prepared ex situ or in situ to the vacuum, to deposition ofthin films. Generic considerations of sample preparation are also given.
The critically acclaimed laboratory standard for more than forty
years, Methods in Enzymology is one of the most highly respected
publications in the field of biochemistry. Since 1955, each volume
has been eagerly awaited, frequently consulted, and praised by
researchers and reviewers alike. More than 260 volumes have been
published (all of them still in print) and much of the material is
relevant even today--truly an essential publication for researchers
in all fields of life sciences.
Medical Applications of Electrochemistry, a volume of the series Modern Aspects of Electrochemistry, illustrates the interdisciplinary nature of modern science by indicating the many current issues in medicine that are susceptible to solution by electrochemical methods. This book also suggests how personalized medicine can develop.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Sean Ashton's doctoral thesis, which he finished at the Technical University in Munich, describes the challenge of constructing a Differential Electrochemical Mass Spectrometer instrument (DEMS). DEMS combines an electrochemical cell with mass spectrometry via a membrane interface, allowing gaseous and volatile electrochemical reaction species to be monitored online. The thesis carefully introduces the fuel cell electrocatalyst development concerns before reviewing the pertinent literature on DEMS. This is followed by the presentation and discussion of the new extended design, including a thorough characterization of the instrument. The capabilities of the new setup are demonstrated in two research studies: The methanol oxidation reaction on Pt and PtRu catalysts, and the electrochemical corrosion of fuel cell catalyst supports. Despite both topics having long since been studied, new insights can be obtained through careful investigations with the new DEMS instrument that are of great, general interest. The thesis and the instrument thus show the way for future investigations in the field.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Determining the composition and properties of complex hydrocarbon mixtures in petroleum, synthetic fuels, and petrochemical products usually requires a battery of analytical techniques that detect and measure specific features of the molecules, such as boiling point, mass, nuclear magnetic resonance frequencies, etc. there have always been a need for new and improved analytical technology to better understand hydrocarbon chemistry and processes. This book provides an overview of recent advances and future challenges in modern analytical techniques that are commonly used in hydrocarbon applications. Experts in each of the areas covered have reviewed the state of the art, thus creating a book that will be useful to readers at all levels in academic, industry, and research institutions.
Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers), coherent matter waves, Doppler-free Fourier spectroscopy, interference spectroscopy, quantum optics and gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.
This book explains to governments, decision makers and disaster professionals the potential uses of recent technologies for disaster monitoring and risk reduction based on the knowledge and experience of prominent experts/researchers in the relevant fields. It discusses the application of recent technological developments for emerging disaster risks in today's societies and deliberates on the various aspects of disaster risk reduction strategies, especially through sustainable community resilience and responses. This book consists of selected invited papers on disaster management, which focus on community resilience and responses towards disaster risk reduction based on experiences, and closely examines the coordinated research activities involving all stakeholders, especially the communities at risk. Many regions of the world and aspects of disaster risk and its management are covered. It is described how recent technologies will support better understanding and action to reduce the number and impact of disasters in future. The principal audience for this book is researchers, urban planners, policy makers, as well as students.
This book covers new materials used as analytical devices for increasing the interactions between the development of new analytical devices and materials science. The authors describe how different types of materials such as polymers, self-assembled layers, phthalocyanines, and nanomaterials can further enhance sensitivity and promote selectivity between analytes for different applications. They explain how continuing research and discussion into materials science for chemical sensing is stimulating the search for different strategies and technologies that extract information for these chemical sensors in order to obtain a chemical fingerprint of samples. |
![]() ![]() You may like...
Length Tension Testing Book 1, Lower…
Paolo Sanzo, Murray Machutchon
Spiral bound
Turbine Steam Path Maintenance & Repair…
William P Sanders
Hardcover
|