![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry
" Cluster Materials" is the fourth volume of the highly successful
series " Advances in Metal and Semiconductor Clusters." In this
volume the focus is on the properties of clusters which determine
their potential applications as new materials. Metal and
semiconductor clusters have been proposed as precursors for
materials or as actual materials since the earliest days of cluster
research. In the last few years, a variety of techniques have made
it possible to produce clusters in sizes varying from a few atoms
up to several thousand atoms. While some measurements are performed
in the gas phase on non-isolated clusters, many cluster materials
can now be isolated in macroscopic quantities and more convenient
studies of their properties become possible.
Whole Pattern Fitting, Rietveld Analysis, and Calculated Diffraction Patterns. Quantitative Phase Analysis by XRay Diffraction (XRD). Thin Film and Surface Characterization by XRD. Lattice Defects and XRay Topography. Texture Analysis by XRD. XRD Instrumentation, Techniques, and Reference Materials. Stress Determination by Diffraction Methods. XRD Profile Fitting, Crystallite Size and Strain Determination. XRD Applications: Detection Limits, Superconductors, Organics, Minerals. Mathematical Methods in XRay Spectrometry (XRS). Thin Film and Surface Characterization by XRS and XPS. Total Reflection XRS. XRS Techniques and Instrumentation. XRS Applications. XRay Imaging and Tomography. 161 articles. Index.
This book follows up an Advanced Research Workshop dedicated to the subject of adsorption. It presents an up-to-date review of the latest achievements in the synthesis, characterization and applications of hybrid organic-inorganic materials and of carbon and combined adsorbents. The modeling of the adsorption process, including the simulation of carbon masks used for both civil and military protection purposes is also addressed. Includes applications in environmental, military and post-disaster situations.
This book gives a detailed account of the holistic research carried out on the analytical data obtained historically on the products of the Nantgarw and Swansea porcelain manufactories which existed for a few years only during the second decade of the 19th Century. A background to the establishment of the two factories, which are linked through the persons of the enigmatic William Billingsley and his kiln manager, Samuel Walker, involves the sourcing of their raw materials and problems associated with the manufacture and distribution of the finished products. A description of the minerals and additives used in porcelain production is recounted to set the scene for the critical evaluation of the comprehensive analytical data which have been published on Nantgarw and Swansea porcelains. For the first time, the author has adopted a nondestructive technique, Raman spectroscopy, to interrogate perfect samples of Nantgarw and Swansea porcelain, as well as a selection of shards from an archaeological excavation carried out at a waste dump at the Nantgarw China Works site. Following these experiments, several questions relating to the porcelain bodies of Swansea and Nantgarw china can be answered and a protocol established for the preliminary evaluation of items of suspect attribution to confirm or not the correctness of their assignment to these Welsh porcelain factories.
After earlier meetings in Enschede (NL, 1994), Basel (CH, 1996) and Banff (CDN, 1998), muTAS 2000 is the fourth international symposium on the subject of miniaturized techniques, methods, devices and systems for (bio)chemical analysis and synthesis. Initially started as a minor sub-topic in the large field of Micro System Technology (MST or MEMS), the field of muTAS is currently generally considered as one of the most important application areas of MST, which is reflected in the still rapidly growing research, development, and, above all, commercialization activities. Apart from further development and refining of the research on electrophoretic separation, electrokinetically driven flow systems, cell manipulation and analysis, miniaturized flow systems and study of microfluidics, the important new area of centrifugal microfluidics on CD devices receives broad attention. On the other hand, new innovations range from topics as exotic as photoacoustic detection in microreactors and molecular emission detection on a chip to very high-pressure microreactor devices and shear-flow driven separations. The enormous speed of the developments in this field is illustrated by the large number of new start-up companies, some of them based upon technologies that were not even published at the former meeting in Banff in 1998. All this illustrates the great excitement that continues to govern this field in which generation and analysis of (bio)chemical information using microtechnology becomes more and more entangled in what one could call micro (bio)chemical systems. This volume contains the proceedings of the fourth international symposium on Micro Total Analysis Systems (muTAS 2000), held 14-18 May 2000, at the University of Twente in Enschede, The Netherlands, and organised by the MESA+ Research Institute. Cutting-edge research of all invited and contributed papers presented by the world's leading &mgr;TAS groups provide the newest state of the art of this electrifying, multidisciplinary field.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
This second edition of the highly successful dictionary offers more than 300 new or revised terms. A distinguished panel of electrochemists provides up-to-date, broad and authoritative coverage of 3000 terms most used in electrochemistry and energy research as well as related fields, including relevant areas of physics and engineering. Each entry supplies a clear and precise explanation of the term and provides references to the most useful reviews, books and original papers to enable readers to pursue a deeper understanding if so desired. Almost 600 figures and illustrations elaborate the textual definitions. The "Electrochemical Dictionary" also contains biographical entries of people who have substantially contributed to electrochemistry. From reviews of the first edition: 'the creators of the Electrochemical Dictionary have done a laudable job to ensure that each definition included here has been defined in precise terms in a clear and readily accessible style' (The Electric Review) 'It is a must for any scientific library, and a personal purchase can be strongly suggested to anybody interested in electrochemistry' (Journal of Solid State Electrochemistry) 'The text is readable, intelligible and very well written' (Reference Reviews)
and used in munitions. Rather the requirements for the agent's military effects took precedence. In addition, the interaction among the political, technical, and legal challenges connected with the known or possible risks posed by CW agents is complex and sometimes not well understood. This is usually because technical considerations, when acted on, are almost invariably informed by political ones, such as various legal requirements. The book contains nine chapters covering different aspects of the research on environmental consequences of war and its aftermath and covers in one additional chapter more general issues such as prevention of war and its environmental c- sequences, the legal, political, and technical background to selected environmental and human health effects of CW agents, and the atmospheric transport and depo- tion of persistent organic pollutants under warfare conditions to more specific ones related to two main tragic examples: the war in the Balkans and the Gulf War. Aspects of the war in the Balkans cover contamination by heavy metals in Serbian national parks, the impact of NATO strikes on the Danube river basin, and the problems associated with transuranium elements. The Gulf War in Kuwait covers other problems related to the impact of oil contamination, the impact on grou- water resources, and the soil damage of ground fortifications among other envir- mental and health problems.
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes." For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This volume is a collection of lectures presented during the 2009 International School on High-pressure Crystal- graphy, which took place at the Ettore Majorana Center for Scientific Culture, between June 4 and 14, 2009, in the very picturesque Sicilian town of Erice. st The 2009 school was the 41 course of the "International School of Cryst- lography" organized at the Majorana Center and was directed by Elena Figure 1. Audience, including local Boldyreva (Novosibirsk University) organizers (orange scarfs) and student and Przemyslaw Dera (University of participants during one of the lectures. Chicago). Unmatched support and excellent on-site organization was provided by the expert team consisting of Prof. Paola Spadon (Uniersity of Padova), Prof. Lodovico Riva di San Severino (University of Bologna), Elena Papinutto and Prof. John Irvin (University of California, San Franciso), aided by great team of young local organizers ("orange scarfs"). Major part of funding for the school was provided by a grant from the NATO Science for Peace and Security program, through which the 2009 Erice school was recognized as a NATO Advanced Study Institute (ASI).
This book presents an up-to-date overview of cathodoluminescence microscopy and spectroscopy in the field of geosciences. For a decade, no books have been dedicated to this topic. This volume includes new important data on cathodoluminescence spectroscopy, physical parameters and systematic spectral analysis of doped minerals. Each chapter, written by a well-known specialist, covers classic and new fields of application such as carbonate diagenesis, silicates, brittle deformation in sandstones, gemstone recognition, biomineralization, economic geology or geochronology. It will be useful to all scientists, graduate students and professional engineers throughout the geosciences community.
Organic Spectroscopy presents the derivation of structural information from UV, IR, Raman, 1H NMR, 13C NMR, Mass and ESR spectral data in such a way that stimulates interest of students and researchers alike. The application of spectroscopy for structure determination and analysis has seen phenomenal growth and is now an integral part of Organic Chemistry courses. This book provides: Organic Spectroscopy is an invaluable reference for the interpretation of various spectra. It can be used as a basic text for undergraduate and postgraduate students of spectroscopy as well as a practical resource by research chemists. The book will be of interest to chemists and analysts in academia and industry, especially those engaged in the synthesis and analysis of organic compounds including drugs, drug intermediates, agrochemicals, polymers and dyes.
Following the success of the first edition, this pioneering study of pharmaceuticals in the environment has been updated and greatly extended. It includes the status of research on pharmaceuticals in soil, with attention to terrestrial and aquatic environments as well as new substance categories such as tetracylines and chinolones and the latest results concerning contamination of the environment and risk reduction.
Modified Cyclodextrins for Chiral Separation offers a review of the latest advances in developing modified cyclodextrins as chiral selectors for various chromatographic and electromigration techniques. Over the years, many descriptions of chiral separation have appeared in academic journals and books, but most of them have been devoted to either the development of analytical methods and protocols or the summary of different chiral selectors, including cyclodextrins for chiral separation applications. This is in marked contrast to this volume which focuses on the research endeavors concerning the development of cyclodextrin derivatives specifically as either chiral mobile phases for capillary electrophoresis, or chiral stationary phases for various chromatographic techniques including gas chromatography, or high-performance liquid chromatography and supercritical fluid chromatography. The ongoing thread in this book is the synthesis of structurally-defined cyclodextrin derivatives and their applications in enantiomer separation by means of different analytical techniques. Modified Cyclodextrins for Chiral Separation is intended for those who are interested in expanding their knowledge of cyclodextrin chemistry and chiral separation, and in what cyclodextrin modification can be made to suit the needs of chiral selectors for different analytical techniques. It primarily focuses on the state-of-the-art cyclodextrin chemistry which is the basis for all chiral selectors used in these chiral separation techniques. Weihua Tang, PhD, is a professor at the Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, China. Siu-Choon Ng, PhD, is a professor at the Division of Chemical and Biomedical Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore. Dongping Sun, PhD, is a professor at the Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, China.
The application of nanotechnology in different consumer products has delivered new products with highly desirable properties, but at same time has opened a new window for a wide group of emerging contaminants and a new type of human exposure which needs to be assessed. Most of the current human toxicological information on
nanomaterials comes from nano-sized particles in air, and their
effects via inhalation. Other routes of human exposure, such as
water and food, and the effects on human health and the environment
have been less studied. It is the recent research in these areas
that is highlighted here in one of the first books covering the
analysis and ecotoxicological evaluation of nanomaterials in food
and the environment, with both matrices being of considerable
interest. In addition to providing a global summary of recent
research, this book shows how widely used chromatographic and
spectroscopic methods can be added to the analytical arsenal of
microscopic techniques that have commonly been used to characterize
nanomaterials.
This second edition of a successful and highly-accessed monograph has been extended by more than 100 pages. It includes an enlarged coverage of applications for materials characterization and analysis. Also a more detailed description of strategies for determining free energies of ion transfer between miscible liquids is provided. This is now possible with a "third-phase strategy" which the authors explain from theoretical and practical points of view. The book is still the only one detailing strategies for solid state electroanalysis. It also features the specific potential of the techniques to use immobilized particles (for studies of solid materials) and of immobilized droplets of immiscible liquids for the purpose of studying the three-phase electrochemistry of these liquids. This also includes studies of ion transfer between aqueous and immiscible non-aqueous liquids. The bibliography of all published papers in this field of research has been expanded from 318 to now 444 references in this second edition. Not only are pertinent references provided at the end of each chapter, but the complete list of the cited literature is also offered as a separate chapter for easy reference.
As mass spectrometric methods now offer a level of specificity and sensitivity unrealized by spectrophotometric- and immunoassay-based methods, mass spectrometry has entered the clinical laboratory where it is being used for a wide range of applications. In Clinical Applications of Mass Spectrometry: Methods and Protocols, expert researchers provide detailed step-by-step procedures for the analysis of number of analytes of clinical importance. This versatile and expansive volume covers mass spectrometry methods for analytes including a variety of drugs, hormones, and metabolic compounds spanning the disciplines of toxicology, therapeutic drug monitoring, endocrinology, and pediatric metabolism. Written in the highly successful Methods in Molecular BiologyT series format, chapters include brief introductions to the analytes, lists of the necessary materials and reagents, readily reproducible analytical protocols, and detailed notes on troubleshooting and avoiding known pitfalls. Comprehensive and dependable, Clinical Applications of Mass Spectrometry: Methods and Protocols offers its readers a wide array of valuable methods for experienced mass spectrometric labs that are looking to introduce new analyses as well as for those laboratories currently considering the addition of this resourceful and vital technology. Written for: Biochemists, laboratory scientists, pharmacologists, toxicologists, and endocrinologists
This book highlights the various topics in which luminescence and electrochemistry are intimately coupled. The topic of this book is clearly at the frontier between several scientific domains involving physics, chemistry and biology. Applications in these various fields naturally also need to be mentioned, especially concerning displays and advanced investigation techniques in analytical chemistry or for biomedical issues.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This book draws on the latest research to discuss the history and development of high-entropy alloys and ceramics in bulk, film, and fiber form. High-entropy materials have recently been developed using the entropy of mixing and entropy of configuration of materials, and have proven to exhibit unique properties superior to those of conventional materials. The field of high-entropy alloys was born in 2004, and has since been developed for both scientific and engineering applications. Although there is extensive literature, this field is rapidly transforming. This book highlights the cutting edge of high-entropy materials, including their fundamentals and applications. Above all, it reflects two major milestones in their development: the equi-atomic ratio single-phase high-entropy alloys; and the non-equi-atomic ratio dual-phase high-entropy alloys.
This book provides a comprehensive and systematic overview of the latest advances in nanomaterials for proteomics, both theoretical and practical. Consisting of seven chapters, it first covers the synthesis methods, characterization, principles, and performance of functional nanomaterials in various branches of proteomics in detail. This is followed by the applications of nanomaterials for the separation and analysis of various proteins and peptides. Given its scope, the book appeals to a broad readership, including those active in proteomics and materials science; it can also serve as a reference book for students majoring in proteomics analysis.
This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.
The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction - triboplasma - was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.
With the development in the 1960s of ultrahigh vacuum equipment and techniques and electron, X-ray, and ion beam techniques to determine the structure and composition of interfaces, activities in the field of surface science grew nearly exponentially. Today surface science impacts all major fields of study from physical to biological sciences, from physics to chemistry, and all engineering disciplines. The materials and phenomena characterized by surface science range from se- conductors, where the impact of surface science has been critical to progress, to metals and ceramics, where selected contributions have been important, to bio- terials, where contributions are just beginning to impact the field, to textiles, where the impact has been marginal. With such a range of fields and applications, questions about sample selection, preparation, treatment, and handling are difficult to cover completely in one review article or one chapter. Therefore, the editors of this book have assembled a range of experts with experience in the major fields impacted by surface characterization. It is the only book which treats the subject of sample handling, preparation, and treatment for surface characterization. It is full of tricks, cautions, and handy tips to make the laboratory scientist's life easier. With respect to organization of the book, the topics range from discussion of vacuum to discussion of biological, organic, elemental or compound samples, to samples prepared ex situ or in situ to the vacuum, to deposition ofthin films. Generic considerations of sample preparation are also given. |
![]() ![]() You may like...
Phase-Field Crystals - Fast Interface…
Peter Galenko, Vladimir Ankudinov, …
Hardcover
R3,042
Discovery Miles 30 420
Thermal Degradation of Polymeric…
Krzysztof Pielichowski, James Njuguna, …
Paperback
R4,955
Discovery Miles 49 550
Zetetic Astronomy. Earth Not a Globe! an…
Samuel Birley Rowbotham
Hardcover
R898
Discovery Miles 8 980
Energy-Efficiency of Conveyor Belts in…
Daniela Marasova, Monika Hardygora, …
Hardcover
You Can Know His Voice - The Gospel of…
Treva Scott Thompson
Hardcover
|