![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry
Analytical ultracentrifugation (AUC) is a powerful method for the characterization of polymers, biopolymers, polyelectrolytes, nanoparticles, dispersions, and other colloidal systems. The method is able to determine the molar mass, the particle size, the particle density and interaction parameters like virial coefficients and association constants. Because AUC is also a fractionation method, the determination of the molar mass distribution, the particle size distribution, and the particle density distribution is possible. A special technique, the density gradient method, allows fractionating heterogeneous samples according to their chemical nature that means being able to detect chemical heterogeneity. The book is divided into chapters concerning instrumentation, sedimentation velocity runs, density gradient runs, application examples and future developments. In particular, the detailed application chapter demonstrates the versatility and power of AUC by means of many interesting and important industrial examples. Thus the book concentrates on practical aspects rather than details of centrifugation theory. Both authors have many years of experience in an industrial AUC research laboratory of a world leading chemical company.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
The 2nd International Multidisciplinary Microscopy and Microanalysis Congress & Exhibition (InterM 2014) was held on 16-19 October 2014 in Oludeniz, Fethiye/ Mugla, Turkey. The aim of the congress was to gather scientists from various branches and discuss the latest improvements in the field of microscopy. The focus of the congress has been widened in an "interdisciplinary" manner, so as to allow all scientists working on several related subjects to participate and present their work. These proceedings include 33 peer-reviewed technical papers, submitted by leading academic and research institutions from over 17 countries and representing some of the most cutting-edge research available. The papers were presented at the congress in the following sessions: * Applications of Microscopy in the Physical Sciences * Applications of Microscopy in the Biological Sciences
Impurities, disorder or amorphous systems - ill-condensed matter - are mostly considered inconveniences in the study of materials, which is otherwise heavily based on idealized perfect crystals. The Kondo effect and the scaling theory of localization are among the fundamental and early discoveries which revealed the novelty hidden in impure or disordered systems. Recent advances in condensed matter physics have emphasized the role of topology, spin-orbit coupling, and certain discrete symmetries such as time reversal in many physical phenomena. These have irreversibly transformed the essential ideas and purview of condensed matter physics, both in theoretical and experimental directions. However, many of these recent developments and their implications are limited to, or by, ideas that pertain to clean systems. This thesis deals with various aspects of these new developments, but in the case of unclean systems. The author introduces new ideas such as amorphous topological insulators, fractalized metals and fractionalized spins.
This book collects all the latest advances in the leading research of the circularly polarized luminescence (CPL) of small organic molecules. Compared with that of lanthanide-based fluorophores, the research into the CPL of small organic molecules is still at the developmental stage for their relatively smaller dissymmetric factors, but has been a source of widespread attention recently. The book includes the state of the art of the discoveries in CPL organic molecules, such as helicenes, biaryls, cyclophanes, boron dipyrromethene dyes, and other chiral molecules, mostly in their isolated states, covering all possible chiral substances for future applications. This book also highlights the recent development of CPL instruments as well as time-resolved circular dichroism spectroscopy, to facilitate the further development and future design of CPL molecules.
''Excellent and very timely....It will undoubtedly become a standard reference for the application of circular dichroism (CD) to biomolecules.'' "--- Quarterly Review of Biology," March 1997 '' T]estament to the book's utility is the fact that during the course of my review I had to 'rescue' it from the desks of graduate students on an almost daily basis. In summary, this is a great book.'' "--- American Scientist" ''Well documented chapters provide a very good insight into the problems surrounding the conformation of biomacromolecules...An indispensible source of information.'' "--- Nahrung," 42(2), 1998 Renowned experts present the first state-of-the-art description of circular dichroism spectroscopy (CD). Chapters present in-depth discussions of the history of the field, the theory of CD for application to globular proteins, membrane proteins, peptides, nucleic acids and their interactions, carbohydrates, and instrumentation. Discussions also feature new techniques using synchrotron radiation, vibrational Raman optical activity, and vibrational CD. More than 250 illustrations supplement the text.
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
This series provides an unequalled source of information on an area of chemistry that continues to grow in importance. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in the field, researchers will find this an invaluable source of information on current methods and applications.
This handbook collects over 800 infrared spectra of rubbers, plastics and thermoplastics elastometers. It contains five different libraries: rubbers in transmission spectroscopy, rubbers in pyrolysate spectroscopy, plastics in transmission spectroscopy, plastics in pyrolysate spectroscopy, and rubbers and plastics in single-bounce ATR spectroscopy. This is an invaluable reference for the rubbers and plastics industry.
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field. All chapters from Topics in Heterocyclic Chemistry are published Online First with an individual DOI. In references, Topics in Heterocyclic Chemistry is abbreviated as Top Heterocycl Chem and cited as a journal.
Electron Paramagnetic Resonance (EPR) Volume 19 highlights major developments in this area reported up to the end of 2002, with results being set into the context of earlier work and presented as a set of critical yet coherent overviews. The topics covered describe contrasting types of application, ranging from biological areas such as EPR studies of free-radical reactions in biology and medically-related systems, to experimental developments and applications involving EPR imaging, the use of very high fields, and time-resolved methods. Critical and up-to-the-minute reviews of advances involving the design of spin-traps, advances in spin-labelling, paramagnetic centres on solid surfaces, exchange-coupled oligomers, metalloproteins and radicals in flavoenzymes are also included. As EPR continues to find new applications in virtually all areas of modern science, including physics, chemistry, biology and materials science, this series caters not only for experts in the field, but also those wishing to gain a general overview of EPR applications in a given area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
In important branches of manufacturing industries, especially those producing chemicals, polymers, semiconductors, ceramics, metals and alloys, analytical process control is already an integral part of the company. Far reaching decisions with respect to quality, ecology and economy are based on the respective analytical data. The goal of this practice-oriented book is to introduce chemists, engineers and technicians to the strategies, techniques and efficiency of modern process analytical chemistry. The author is especially aiming at those professionals in small and medium enterprises who have to carry out process control tasks in a "solo-run".
Molecular Sieves- Science and Technology will cover, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. Authored by renowned experts, the contributions will be grouped together topically in such a way that each volume of the book series will be dealing with a specific sub-field. Volume 3 deals with the most widely employed techniques for the post-synthesis modificaton of molecular sieves. Among the topics covered in considerable detail are ion exchange, both in the more conventional variant in aqueous suspension and in the solid-state variant, the various methods for dealumination of zeolites, and the techniques for introducing metallic, ionic, oxidic and sulfidic clusters into the cages and channels of microporous materials.
This volume, which addresses various basic sensor principles, covers micro gravimetric sensors, semiconducting and nano tube sensors, calorimetric sensors and optical sensors. Furthermore, the authors discuss recent developments in the related sensitive layers including new properties of nano structured metal oxide layers. They provide in-depth insights into the unique chemistry and signal generation of copper oxide in percolating sensors and present a variety of applications of functional polymers made possible by proper imprinting. Highlights of the subjects covered include: requirements for high-temperature sensors carbon nano tube sensors new sensing model for nanostructured In2O3 bio mimetic approach for semiconductor sensor-based systems optical readout for inorganic and organic semiconductor sensors concept of virtual multisensors to improve specificity and selectivity calorimetric sensors for hydrogen peroxide detection percolation effect-based sensors to implement dosimeters imprinted polymer layers for bulk and surface acoustic wave sensors"
Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject. "
Laboratory Experiments in Trace Environmental Quantitative Analysis is a collection of student-tested experiments that introduce important principles that underlie various laboratory techniques in the field of trace environmental organics and inorganics quantitative analysis. It crosses the more traditional academic disciplines of environmental science and analytical chemistry. The text is organized to begin with minimally rigorous session/experiments and increase in rigor as each session/experiment unfolds. Each experiment features learning objectives, expected student outcomes, and suggestions for further study. Additional features include: Students are introduced to the principles and laboratory practice of instrumental analysis (determinative techniques) that are clearly presented. Students are carefully taken through various ways to prepare samples for trace quantitative analysis (sample prep techniques). Safety warnings are listed within each experiment. Students are introduced to all three types of instrument calibration: external, internal and standard addition. Instructors who are responsible for laboratory courses in analytical chemistry with potential application to environmental sample matrices will find this textbook of value. Graduate programs in environmental science and engineering will also greatly benefit from the content.
We are pleased to present the ?fth volume of Progress in Ultrafast Intense LaserScience.Asthefrontiersofultrafastintenselasersciencerapidlyexpand ever outward, there continues to be a growing demand for an introduction to this interdisciplinary research ?eld that is at once widely accessible and ca- ble of delivering cutting-edge developments. Our series aims to respond to this call by providing a compilation of concise review-style articles written by researchers at the forefront of this research ?eld, so that researchers with d- ferent backgrounds as well as graduate students can easily grasp the essential aspects. As in the previous volumes of PUILS, each chapter of this book begins with an introductory part, in which a clear and concise overview of the topic and its signi?cance is given, and moves onto a description of the authors' most recent research results. All the chapters are peer-reviewed. The articles ofthis?fth volumecovera diverserangeofthe interdisciplinaryresearch?eld, and the topics may be grouped into three categories: coherent responses of gaseousand condensed matter to ultrashortintense laser pulses (Chaps. 1-4), propagationof intense laser pulses (Chaps. 5, 6), and laser-plasma interaction and its applications (Chaps. 7-10). From the third volume, the PUILS series has been edited in liaison with the activities of Center for Ultrafast Intense Laser Science in The University of Tokyo, and JILS (Japan Intense Light Field Science Society), the latter of which has also been responsible for sponsoring the series and making the regularpublicationofitsvolumespossible.Fromthe presentvolume,the C- sortiumonEducationandResearchonAdvancedLaserScience,theUniversity of Tokyo, joins this publication activity as one of the sponsoring programs.
Microemulsions and gels are well-known systems, which play a major role in colloidal and interfacial science. In contrast, the concept of gel microemulsions is still quite new. Gelled microemulsions are highly promising for microemulsion applications in which low viscosity is undesirable, such as administering a drug-delivering microemulsion to a certain area of the skin. It is essential to understand the properties of and structures formed in a system combining microemulsion components and a gelator. This PhD thesis by Michaela Laupheimer provides an in-depth discussion of the phase behavior and sol-gel transition of a microemulsion gelled by a low molecular weight gelator as well as the rheological behavior of a gelled bicontinuous microemulsion. Moreover, the microstructure of the gelled bicontinuous system is fully clarified using techniques like self-diffusion NMR and small angle neutron scattering (SANS). By comparing gelled bicontinuous microemulsions with corresponding non-gelled microemulsions and binary gels, it is demonstrated that bicontinuous microemulsion domains coexist with a gelator network and that the coexisting structures possess no fundamental mutual influence. Hence, gelled bicontinuous microemulsions have been identified as a new type of orthogonal self-assembled system.
Leading practitioners describe in detail advanced methods of mass spectrometry used in structural characterization of biomacromolecules of both natural and recombinant origin. They demonstrate by example how these methodologies can solve a wide array of real-world problems in protein biochemistry, immunology, and glycobiology, as well as for human bacterial pathogens, lipids, and nucleic acids. The book offers a unique opportunity to learn these techniques that are revolutionizing the field. Its authoritative assessment in the context of how to solve important and challenging problems in bioscience and medicine ensures a competitive advantage for today's researchers.
From forensics and security to pharmaceuticals and environmental applications, spectroscopic detection is one of the most cost-effective methods for identifying chemical compounds in a wide range of disciplines. For spectroscopic information, correlation charts are far more easily used than tables, especially for scientists and students whose own areas of specialization may lie elsewhere. The CRC Handbook of Fundamental Spectroscopic Correlation Charts provides a collection of spectroscopic information and unique correlation charts for use in the interpretation of spectroscopic measurements. The handbook presents useful analysis and assignment of spectra and structural elucidation of organic and organometallic molecules. The correlation charts are compiled from an extensive search of spectroscopic literature and contain current, detailed information that includes new results for many compounds. The handbook includes graphical data charts for nuclear magnetic resonance spectroscopy of the most useful nuclei, as well as infrared and ultraviolet spectrophotometry. Because mass spectrometry data is not best represented graphically, the data are presented in tabular form, where mass spectrometry can be used for analyses and structural determinations in tandem with other techniques. In addition to presenting absorption bands and intensities for a variety of important functional groups and chemical families, the book also discusses instrument calibration, diagnostics, common solvents, fragmentation patterns, several practical conversion tables, and laboratory safety. Not intended to replace reference works that provide exhaustive spectral charts on specific compound classes, this book fillsthe need for fundamental charts that are needed on a general, day-to-day basis. The CRC Handbook of Fundamental Spectroscopic Correlation Charts is an ideal laboratory companion for students and professionals in academic, industrial, and government labs.
This, the fourth volume in the Springer series on fluorescence, focuses on the fluorescence of nanosystems, polymers and supermolecules, as well as the development and application of fluorescent probes. Aimed at researchers in organic and physical chemistry and in material sciences, emphasis is placed on the fluorescence of artificial and biological nanosystems; single molecule fluorescence and the luminescence of polymers; and micro- and nanoparticles and nanotubes.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This book highlights key technologies and identifies areas for further development in proteogenomics. The utility and usefulness of very large Omics data sets (Next Gen Sequencing of DNA, RNA-seq, ribosome profiling, mass spectrometry- and antibody-based proteomics) is discussed and opportunities and challenges of related bioinformatics applications are outlined. The reader will be able to appreciate the interdisciplinary nature of the continuously evolving area of proteogenomics, which has already grown beyond its original concept of verifying gene annotations by proteomics. The chapters presented in this book are arranged to offer a general overview, rather than to provide detailed descriptions of technologies. The selected applications will provide useful insight into the level of detail that can be obtained in relation to certain diseases areas, including cancer biology and personalized medicine. The readers will find that each chapter delivers a comprehensive approach to proteogenomics, each from the point of view of a specific application. Research scientists interested in innovative processes that can offer a unique and at the same time a more complete access to technological developments and concepts that in turn can contribute to a better understand biological functions should read this book.
Although size exclusion chromatography (SEC) is perhaps the most popular and widely used technique for determining the molecular weight distribution of polymeric materials, there have been very few texts written on this topic. During the past decade, SEC has experienced a considerable amount of growth in regard to column and detector technology and new applications. With these advances, SEC can now be used for determining absolute molecular weight, polymer chain conformation and size, and branching, as well as polymer solution properties. This book introduces the reader to the fundamentals of SEC with emphasis on practical aspects of the technique, such as column and mobile selection, calibration, new detector capabilities and guidelines for performing SEC on most types of polymers, especially those of industrial importance. This book is intended for either those new to the field of SEC, or for those research workers who require a more comprehensive background. |
![]() ![]() You may like...
Solitary Refinement - Chromatics, Chords…
Nadina Mackie Jackson
Hardcover
R1,365
Discovery Miles 13 650
Accent on Achievement, Book 1 (Flute)
John O'Reilly, Mark Williams
Sheet music
R360
Discovery Miles 3 600
300 Hundred Years at the Keyboard - 2nd…
Patricia Fallows-Hammond
Hardcover
R789
Discovery Miles 7 890
Hopkins - The Organ, Its History and…
Edward J. Hopkins, Edward F. Rimbault
Hardcover
R1,224
Discovery Miles 12 240
|