![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry
This book is the first, single-source guide to successful experiments using the local electrode atom probe (LEAP (R)) microscope. Coverage is both comprehensive and user friendly, including the fundamentals of preparing specimens for the microscope from a variety of materials, the details of the instrumentation used in data collection, the parameters under which optimal data are collected, the current methods of data reconstruction, and selected methods of data analysis. Tricks of the trade are described that are often learned only through trial and error, allowing users to succeed much more quickly in the challenging areas of specimen preparation and data collection. A closing chapter on applications presents selected, state-of-the-art results using the LEAP microscope.
This work investigates the energy-level alignment of hybrid inorganic/organic systems (HIOS) comprising ZnO as the major inorganic semiconductor. In addition to offering essential insights, the thesis demonstrates HIOS energy-level alignment tuning within an unprecedented energy range. (Sub)monolayers of organic molecular donors and acceptors are introduced as an interlayer to modify HIOS interface-energy levels. By studying numerous HIOS with varying properties, the author derives generally valid systematic insights into the fundamental processes at work. In addition to molecular pinning levels, he identifies adsorption-induced band bending and gap-state density of states as playing a crucial role in the interlayer-modified energy-level alignment, thus laying the foundation for rationally controlling HIOS interface electronic properties. The thesis also presents quantitative descriptions of many aspects of the processes, opening the door for innovative HIOS interfaces and for future applications of ZnO in electronic devices.
In this monograph, the graphene-based field-effect transistor (FET) biosensors are shown to be an emerging sensing platform. Divided into two parts the first set of chapters are devoted to basic knowledge of graphene, graphene FET and its biosensing. In the second part of this book the applications of graphene FET biosensors combined with various biotechnologies are presented. As well as discussing the existing technologies the authors also introduce their own ideas and concepts. Finally the remaining problems in graphene FET biosensors are discussed, along with proposed solutions and prospects for future applications. This monograph allows readers to grasp the basic knowledge and future direction of graphene-based FET biosensors.
Liquid-Chromatography-Mass-Spectrometry procedures have been shown to be successful when applied to drug development and analysis. LC-MS in Drug Analysis: Methods and Protocols provides detailed LC-MS/MS procedures for the analysis of several compounds of clinical significance. The first chapters provide the reader with an overview of mass spectroscopy, its place in clinical practice, its application of MS to TDM and toxicology, and the merits of LC-MS(/MS) and new sample preparation techniques. The following chapters discuss different approaches to screening for drugs of abuse and for general unknowns, as well as targeted measurement of specific analytes or classes of analytes including abused drugs, toxic compounds, and therapeutic agents. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, LC-MS in Drug Analysis: Methods and Protocols seeks to serve both professionals and novices with its well-honed methodologies.
Computational and Instrumental Methods in EPR is devoted to both instrumentation and computation aspects of EPR, while addressing applications such as spin relaxation time measurements. However, this is the first comprehensive volume to offer practical, non-invasive spectroscopic methods of analyzing the rheology of biopolymers: comparative studies of polymer fluidity using traditional methods (e.g. viscosity) and nuclear magnetic resonance.
Recent advances in large scale DNA sequencing technology have made it possible to sequence the entire genome of an organism. Attention is now turning to the analysis of the product of the genome, the proteome, which is the set of proteins being expressed by a cell. Mass spectrometry is the method of choice for the rapid large-scale identification of these proteomes and their modifications. This is the first book to extensively cover the applications of mass spectrometry to proteome research.
The author has drawn together almost all published methods since 1975 on the determination of anions in all types of matrices. He presents the methods in a logical manner so that the reader can quickly gain access to the method and types of instrumentation available.
Time-correlated single photon counting (TCSPC) is a remarkable technique for recording low-level light signals with extremely high precision and picosecond-time resolution. TCSPC has developed from an intrinsically time-consuming and one-dimensional technique into a fast, multi-dimensional technique to record light signals. So this reference and text describes how advanced TCSPC techniques work and demonstrates their application to time-resolved laser scanning microscopy, single molecule spectroscopy, photon correlation experiments, and diffuse optical tomography of biological tissue. It gives practical hints about constructing suitable optical systems, choosing and using detectors, detector safety, preamplifiers, and using the control features and optimising the operating conditions of TCSPC devices. Advanced TCSPC Techniques is an indispensable tool for everyone in research and development who is confronted with the task of recording low-intensity light signals in the picosecond and nanosecond range. "The monograph by Dr Wolfgang Becker is a complete and lucid
summary of both the basic principles and the state-of-the-art of
TCSPC. This book contains descriptions that are only available from
the primary literature or specialized web sites. An understanding
of the present technology will allow the reader to make effective
use of the multi-dimensional capabilities of modern time-resolved
fluorescence instruments."
This work presents a snapshot of the state of the art of modern biomolecular crystallography, from crystallisation through structure determination and even interactive presentation on the web. Methods driving the latest automated structure determination pipelines are explained, as well as how to deal with problems such as crystal pathologies that still demand expert analysis. These methods are illustrated through their application to problems of great biological interest, such as the molecular machinery underlying the complement pathway, the mechanism of action of monoamine oxidase inhibitors, and the structure of the eukaryotic ribosome. Complementary approaches, such as neutron diffraction, small angle X-ray scattering, coherent diffraction and computational modelling, are also explored.
This thesis presents the development of theranostic gold nanostars (GNS) for multimodality cancer imaging and therapy. Furthermore, it demonstrates that a novel two-pronged treatment, combining immune-checkpoint inhibition and GNS-mediated photothermal nanotherapy, can not only eradicate primary treated tumors but also trigger immune responses to treat distant untreated tumors in a mouse animal model. Cancer has become a significant threat to human health with more than eight million deaths each year, and novel methods for cancer management to improve patients' overall survival are urgently needed. The developed multifunctional GNS nanoprobe with tip-enhanced plasmonics in the near-infrared region can be combined with (1) surface-enhanced Raman spectroscopy (SERS), (2) two-photon photoluminescence (TPL), (3) X-ray computed tomography (CT), (4) magnetic resonance imaging (MRI), (5) positron emission tomography (PET), and (6) photothermal therapy (PTT) for cancer imaging and treatment. The ability of the GNS nanoprobe to detect submillimeter intracranial brain tumors was demonstrated using PET scan - a superior non-invasive imaging modality - in a mouse animal model. In addition, delayed rechallenge with repeated cancer cell injection in cured mice did not lead to new tumor formation, indicating generation of a memorized immune response to cancer. The biocompatible gold nanostars with superior capabilities for cancer imaging and treatment have great potential for translational medicine applications.
The series Molecular Methods of Plant Analysis launches the former 'Modern Methods' into the 'molecular' era with this volume on "Taste and Aroma". Analysis of the plant components interacting with these two senses, so important for the very survival of human beings and, in more recent times, the key to their enjoyment of life as well, is presented with examples of the use of molecular approaches. These include DNA microarrays, antisense technology and RNA gel blot analysis.Some recent advances in plant analysis technology embrace amongst others the use of electroantennography in the detection of physiologically important flower volatiles. An introductory chapter explains what we know about the molecular biology of human taste and aroma receptors, as this has implications for the analysis of plant components interacting with these receptors. As the first volume in the molecular series, this book lays the foundation for others to come.
Optical Spectroscopy bridges a gap by providing a background on optics while focusing on spectroscopic methodologies, tools and instrumentations. The book introduces the most widely used steady-state and time-resolved spectroscopic techniques, makes comparisions between them, and provides the methodology for estimating the most important characteristics of the techniques such as sensitivity and time resolution.
As a key component of human survival, a safe and sufficient food supply is essential for a healthy and productive population throughout the world, so assurance that the food supply is clean and free of harmful substances is a global concern. In "Mass Spectrometry in Food Safety: Methods and Protocols," experts in the field provide context to the subject through reviews of regulations in various countries, the current state-of-the art, and specific, detailed scientific methods being employed today. The volume thoroughly covers the key areas in food safety, such as detection of low level chemical residues, pesticide analysis aided by chromatographic techniques, and the revealing of mycotoxins and chemical contaminants from packaging materials. Written in the highly successful "Methods in Molecular Biology " series format, method chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Pertinent and cutting-edge, "Mass Spectrometry in Food Safety: Methods and Protocols" serves researchers with both understanding and appreciation for the contribution of mass spectrometry and its vital application to food testing and food safety."
Trace element analysis plays a prominent role in various fields, from mineralogy and geology to semiconductor manufacture and foods. In geochemical exploration, the analysis of trace elements assumes high significance due to the multifaceted role played by them. The analyte is at the detection limit of many instrumental techniques. This makes their determination difficult This book covers a wide spectrum of destructive and non-destructive analytical techniques and recent developments in them used all over the world, including developing countries, for quantitation of trace elements. With revolutionary progress in the last three to four decades in analytical techniques, several ICP-based techniques like ICP-OES and ICP-MS and other nuclear analytical techniques have enabled determination of trace elements at the ppb level. However, these methods require expensive instrumentation and cannot be made available everywhere. The quality of analytical data is dependent on valid reference standards. The book contains detailed sample preparation in varying matrices and an important chapter on statistical treatment of analytical data for the purpose of quality control and quality assurance. Pulling together, the book, containing the work carried out by the author's group in India, will be useful to analysts involved in geochemical explorations.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
are intended to fill the gap between a manufacturer's handbook, and review articles that highlight the latest scientific developments. A fourth volume will deal with techniques for specimen handling, beam artifacts, and depth profiling. It will provide a compilation of methods that have proven useful for specimen handling and treatment, and it will also address the common artifacts and problems associated with the bombardment of solid sur faces by photons, electrons, and ions. A description will be given of methods for depth profiling. Surface characterization measurements are being used increasingly in di verse areas of science and technology. We hope that this series will be useful in ensuring that these measurements can be made as efficiently and reliably as possible. Comments on the series are welcomed, as are suggestions for volumes on additional topics. C. J. Powell Gaithersburg, Maryland A. W. Czandema Golden, Colorado D. M. Hercules Pittsburgh, Pennsylvania T. E. Madey New Brunswick, New Jersey J. T. Yates, Jr."
Lena Daumanns's thesis describes structural and functional studies of the enzyme Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes. It also examines the properties of small mimics of this enzyme and related binuclear metallohydrolases such as the metallo-ss-lactamases to enhance our understanding of hydrolytic cleavage of important substrates like phosphoesters and -lactams. Overall, this project has led to a better understanding of the metal ion binding and active site structural features of the enzyme GpdQ. Daumann describes how she successfully immobilized phosphoesterase and related biomimetics on solid supports for potential applications in the area of bioremediation of organophosphate pesticides. Analysis shows that both the enzyme and biomimetics can be stored on the solid support without loss of activity. Furthermore, the author specroscopically and mechanistically characterized a number of Zn(II), Cd(II) and Co(II) complexes, some of which are among the most active biomimetics towards organophosphates reported to date. This thesis makes excellent reading for non-specialists because each chapter includes a short introduction section.
This comprehensive book presents all aspects of acoustic metamaterials and phononic crystals. The emphasis is on acoustic wave propagation phenomena at interfaces such as refraction, especially unusual refractive properties and negative refraction. A thorough discussion of the mechanisms leading to such refractive phenomena includes local resonances in metamaterials and scattering in phononic crystals.
"Aperiodic Crystals" collects 37 selected papers from the scientific contributions presented at "Aperiodic" 2012 - theSeventh International Conference on Aperiodic Crystalsheld held in Cairns, Australia, 2-7 of September 2012. The volume discusses state-of-the-art discoveries, new trends and applications of aperiodic crystals - including incommensurately modulated crystals, composite crystals, and quasicrystals - from a wide range of different perspectives. Starting with a general historical introduction to aperiodic crystals, the book proceeds to examine the complex mathematics of aperiodic long-range order, as well as the theoretical approaches aimed at understanding some of the unique properties and mechanisms underlying the existence of aperiodic crystals. The book then explores in detail such topics as complex metallic alloys, modulated structures, quasicrystals and their approximants, dynamics, disorder and defects in quasicrystals. It concludes with an analysis of quasicrystal surfaces and their properties. By describing the latest research and the progress made on the structure determination of aperiodic crystals and the influence of this unique structure on their physical properties, this book represents a valuable resource to mathematicians, crystallographers, physicists, chemists, materials and surface scientists, and even architects and artists, interested in the fascinating nature of aperiodic crystals.
In this thesis, the author has developed a high-resolution spin-resolved photoemission spectrometer that achieves the world-best energy resolution of 8 meV. The author has designed a new, highly efficient mini Mott detector that has a large electron acceptance angle and an atomically flat gold target to enhance the efficiency of detecting scattered electrons. The author measured the electron and spin structure of Bi thin film grown on a Si(111) surface to study the Rashba effect. Unlike the conventional Rashba splitting, an asymmetric in-plane spin polarization and a tremendous out-of-plane spin component were observed. Moreover, the author found that the spin polarization of Rashba surface states is reduced by decreasing the film thickness, which indicates the considerable interaction of Rashba spin-split states between the surface and Bi/Si interface.
This volume has been designed to offer a balanced account of the laboratory synthesis, industrial manufacture and biosynthesis of lipids. Authors describe the synthesis of all the major lipid classes, including new and revised procedures, and there are chapters devoted to the synthesis and manufacture of vitamin E, other natural antioxidants, sugar esters and ethers, and food surfactants. This authoritative work of reference has something for all lipid scientists and technologists. It is directed at chemists and technologists working in oils and fats processing, the food industry, the oleochemicals industry and the pharmaceutical industry; at analytical chemists and quality assurance personnel; and at lipid chemists in academic research laboratories.
This book provides the most updated information of how membrane lipids mediate protein signaling from studies carried out in animal and plant cells. Also, there are some chapters that go beyond and expand these studies of protein-lipid interactions at the structural level. The book begins with a literature review from investigations associated to sphingolipids, followed by studies that describe the role of phosphoinositides in signaling and closing with the function of other key lipids in signaling at the plasma membrane and intracellular organelles.
This thesis presents detailed mechanistic studies on a series of important C-H activation reactions using combined computational methods and mass spectrometry experiments. It also provides guidance on the design and improvement of catalysts and ligands. The reactions investigated include: (i) a nitrile-containing template-assisted meta-selective C-H activation, (ii) Pd/mono-N-protected amino acid (MPAA) catalyzed meta-selective C-H activation, (iii) Pd/MPAA catalyzed asymmetric C-H activation reactions, and (iv) Cu-catalyzed sp3 C-H cross-dehydrogenative-coupling reaction. The book reports on a novel dimeric Pd-M (M = Pd or Ag) model for reaction (i), which successfully explains the meta-selectivity observed experimentally. For reaction (ii), with a combined DFT/MS method, the author successfully reveals the roles of MPAA ligands and a new C-H activation mechanism, which accounts for the improved reactivity and high meta-selectivity and opens new avenues for ligand design. She subsequently applies ion-mobility mass spectrometry to capture and separate the [Pd(MPAA)(substrate)] complex at different stages for the first time, providing support for the internal-base model for reaction (iii). Employing DFT studies, she then establishes a chirality relay model that can be widely applied to MPAA-assisted asymmetric C-H activation reactions. Lastly, for reaction (iv) the author conducts detailed computational studies on several plausible pathways for Cu/O2 and Cu/TBHP systems and finds a reliable method for calculating the single electron transfer (SET) process on the basis of benchmark studies.
This book presents the first comprehensive, interdisciplinary review of the rapidly developing field of air lasing. In most applications of lasers, such as cutting and engraving, the laser source is brought to the point of service where the laser beam is needed to perform its function. However, in some important applications such as remote atmospheric sensing, placing the laser at a convenient location is not an option. Current sensing schemes rely on the detection of weak backscattering of ground-based, forward-propagating optical probes, and possess limited sensitivity. The concept of air lasing (or atmospheric lasing) relies on the idea that the constituents of the air itself can be used as an active laser medium, creating a backward-propagating, impulsive, laser-like radiation emanating from a remote location in the atmosphere. This book provides important insights into the current state of development of air lasing and its applications.
Although a large number of books are available in the fields of solvent extraction and ion exchangers (extraction by chelation or solvation), this book is the first of its kind in the field of liquid ion exchangers (extraction by ion pair formation) which is an upcoming field in solvent extraction chemistry. There are a number of monographs dealing with various aspects of solvent extraction. However, the present title deals in depth with analytical chemistry liquid ion exchangers. This monograph will be very useful to analytical chemists, environmental scientists, chemical processing and material scientists, research workers in solvent extraction as well as postgraduate students majoring in analytical chemistry.This monograph comprises of several chapters. The introduction deals with elementary ideas about liquid ion exchangers and their comparisons with the solid ion exchange resins. The chapter on solvent extraction covers the general classification of mechanisms of extraction and consideration of the extraction equilibria. There are two chapters pertaining to important characteristics and principles of extraction by both liquid anion as well as liquid cation exchangers. The rest of the chapters deal with the separation of elements with liquid ion exchangers, reverse phase partition chromatography and usage of solvent extraction in separation of metals for industrial purposes. |
![]() ![]() You may like...
|