![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility. A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury "ionization scheme" development and the coupling of the RILIS with an arc discharge ion source. Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.
This book offers a complete diagnosis of concrete samples collected from a pile cap block of residential buildings affected by internal swelling reactions. Covering an extensive laboratory campaign to evaluate the transport properties of concrete samples, as well as their physical and chemical composition using advanced techniques to analyse cores extracted from real buildings that have concrete elements affected by internal swelling reactions (ISR). It features several rehabilitation procedures, pile caps repair and rehabilitation design, executed using strengthening procedures to provide the complete restoration of the structural integrity of the element deteriorated. These rehabilitation procedures proved to be a good solution to retrofit pile cap deteriorated by expansions due to internal swelling reactions of concrete. The book also offers a systematic review of the current state of knowledge and it is a valuable resource for scientists, students, and practitioners in various scientific and engineering disciplines, namely, civil and materials engineering, as well as and other interested parties.
Recent advances in infrared molecular spectroscopy have resulted
in sophisticated theoretical and laboratory methods that are
difficult to grasp without a solid understanding of the basic
principles and underlying theory of vibration-rotation absorption
spectroscopy. "Rotational Structure in Molecular Infrared Spectra"
fills the gap between these recent, complex topics and the most
elementary methods in the field of rotational structure in the
infrared spectra of gaseous molecules. There is an increasing need
for people with the skills and knowledge to interpret
vibration-rotation spectra in many scientific disciplines,
including applications in atmospheric and planetary research.
Consequently, the basic principles of vibration-rotation absorption
spectroscopy are addressed for contemporary applications. In
addition to covering operational quantum mechanical methods,
spherical tensor algebra, and group theoretical methods applied to
molecular symmetry, attention is also given to phase conventions
and their effects on the values of matrix elements. Designed for
researchers and PhD students involved in the interpretation of
vibration-rotation spectra, the book intentionally separates basic
theoretical arguments (in the appendices), allowing readers who are
mainly concerned with applications to skip the principles while at
the same time providing a sound theoretical basis for readers who
are looking for more foundational information. - Reviews basic theory and contemporary methods of vibration rotation absorption spectroscopy, including operational quantum mechanical methods, spherical tensor algebra, and group theoretical methods applied to molecular symmetry - Covers sophisticated mathematical topics in simple, easy-to-read language - Discusses methods and applications separately from basic theoretical arguments for quick reference
The progress in nuclear magnetic resonance (NMR) spectroscopy that took place during the last several decades is observed in both experimental capabilities and theoretical approaches to study the spectral parameters. The scope of NMR spectroscopy for studying a large series of molecular problems has notably broadened. However, at the same time, it requires specialists to fully use its potentialities. This is a notorious problem and it is reflected in the current literature where this spectroscopy is typically only used in a routine way. Also, it is seldom used in several disciplines in which it could be a powerful tool to study many problems. The main aim of this book is to try to help reverse these trends. This book is divided in three parts dealing with 1)
high-resolution NMR parameters; 2) methods for understanding
high-resolution NMR parameters; and 3) some experimental aspects of
high-resolution NMR parameters for studying molecular structures.
Each part is divided into chapters written by different specialists
who use different methodologies in their work. In turn, each
chapter is divided into sections. Some features of the different
sections are highlighted: it is expected that part of the
readership will be interested only in the basic aspects of some
chapters, while other readers will be interested in deepening their
understanding of the subject dealt with in them. Contributions by specialists who use the discussed methodologies in their everyday work
Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications provides a unique source of information in an important area of chemistry. Since Volume 40 the nature and ethos of this series have been altered to reflect a change of emphasis towards 'Techniques, Materials and Applications'. Researchers will now find up-to-date critical reviews which provide in-depth analyses of the leading papers in the field, with authors commenting of the quality and value of the work in a wider context. Focus areas will include structure-function relationships, photochemistry and spectroscopy of inorganic complexes, and catalysis; materials such as ceramics, cements, pigments, glasses and corrosion products; techniques such as advanced laser spectroscopy and theoretical methods.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-Based Approach, Second Edition, is a primary text for a course in two-dimensional (2-D) nuclear magnetic resonance (NMR) techniques, with the goal to learn to identify organic molecular structure. It presents strategies for assigning resonances to known structures and for deducing structures of unknown organic molecules based on their NMR spectra. The book begins with a discussion of the NMR technique, while subsequent chapters cover instrumental considerations; data collection, processing, and plotting; chemical shifts; symmetry and topicity; through-bond effects; and through-space effects. The book also covers molecular dynamics; strategies for assigning resonances to atoms within a molecule; strategies for elucidating unknown molecular structures; simple and complex assignment problems; and simple and complex unknown problems. Each chapter includes problems that will enable readers to test their understanding of the material discussed. The book contains 30 known and 30 unknown structure determination problems. It also features a supporting website from which instructors can download the structures of the unknowns in selected chapters, digital versions of all figures, and raw data sets for processing. This book will stand as a single source to which instructors and students can go to obtain a comprehensive compendium of NMR problems of varying difficulty.
This issue of Clinics in Laboratory Medicine, Guest Edited by Nigel Clarke, MD, and Andrew Hoofnagle, MD, will focus on Mass Spectrometry, with topics including: Proteins; Peptides; Small Molecules: Toxicology; Small Molecules: Diagnostics; and Regulatory Considerations.
This book comprises the proceedings of the 12th International Conference on Asia-Pacific Microscopy Conference (APMC12) focusing on emerging opportunities and challenges in the field of materials sciences, life sciences and microscopy techniques. The contents of this volume include papers on aberration corrected TEM & STEM, SEM - FIB, ion beam microscopy, electron diffraction & crystallography, microscopy and imaging associated with bio-nanotechnology, medical applications, host-pathogen interaction, etc. This book will be beneficial to researchers, educators, and practitioners alike.
This book provides easy-to-understand explanations to systematically and comprehensively describe the X-ray CT technologies, techniques, and skills used for industrial and scientific purposes. Included are many references along with photographs, figures, and equations prepared by the author. These features all facilitate the reader's gaining a deeper understanding of the topics being discussed. The book presents expertise not only on fundamentals but also about hardware, software, and analytical methods for the benefit of technical users. The book targets engineers, researchers, and students who are involved in research, development, design, and quality assurance in industry and academia.
This book presents a detailed look at experimental and computational techniques for accurate structure determination of free molecules. The most fundamental property of a molecule is its structure - it is a prerequisite for determining and understanding most other important properties of molecules. The determination of accurate structures is hampered by a myriad of factors, subjecting the collected data to non-negligible systematic errors. This book explains the origin of these errors and how to mitigate and even avoid them altogether. It features a detailed comparison of the different experimental and computation methods, explaining their interplay and the advantages of their combined use. Armed with this information, the reader will be able to choose the appropriate methods to determine - to a great degree of accuracy - the relevant molecular structure.
This book presents a theoretical study of the generation and conversion of phonon angular momentum in crystals. Recently, rotational motions of lattice vibrations, i.e., phonons, in crystals attract considerable attentions. As such, the book theoretically demonstrate generations of phonons with rotational motions, based on model calculations and first-principle calculations. In systems without inversion symmetry, the phonon angular momentum is shown to be caused by the temperature gradient, which is demonstrated in crystals such as wurtzite gallium nitride, tellurium, and selenium using the first-principle calculations. In systems with neither time-reversal nor inversion symmetries, the phonon angular momentum is shown to be generated by an electric field. Secondly, the book presents the microscopic mechanisms developed by the author and his collaborator on how these microscopic rotations of nuclei are coupled with electron spins. These predictions serve as building blocks for spintronics with phonons or mechanical motions.
This companion volume to "Fundamental Polymer Science" (Gedde and Hedenqvist, 2019) offers detailed insights from leading practitioners into experimental methods, simulation and modelling, mechanical and transport properties, processing, and sustainability issues. Separate chapters are devoted to thermal analysis, microscopy, spectroscopy, scattering methods, and chromatography. Special problems and pitfalls related to the study of polymers are addressed. Careful editing for consistency and cross-referencing among the chapters, high-quality graphics, worked-out examples, and numerous references to the specialist literature make "Applied Polymer Science" an essential reference for advanced students and practicing chemists, physicists, and engineers who want to solve problems with the use of polymeric materials.
This thesis describes the application of the collinear resonance laser spectroscopy to sensitively measure the electromagnetic nuclear observables of the neutron-rich indium isotopes 115-131In. This entailed a systematic study of the efficiency of resonant ionization schemes to extract the hyperfine structure of the isotopes, the atomic charge exchange process and benchmarking of modern atomic calculations with a laser ablation ion source. This allowed determination of the root-mean-square nuclear charge radii, nuclear magnetic dipole moments, nuclear electric quadrupole moments and nuclear spins of the 113-131In isotopes with high accuracy. With a proton hole in the Z = 50 nuclear shell closure of tin and several nuclear isomer states, these measurements of the indium (Z = 49) isotope chain provided an efficient probe of the evolution of nuclear structure properties towards and at the doubly-magic nuclear shell closure of 132Sn (N = 82) - revealing unpredicted changes.
This book presents photoelectron spectroscopy as a valuable method for studying the electronic structures of various solid materials in the bulk state, on surfaces, and at buried interfaces. This second edition introduces the advanced technique of high-resolution and high-efficiency spin- and momentum-resolved photoelectron spectroscopy using a novel momentum microscope, enabling high-precision measurements down to a length scale of some tens of nanometers. The book also deals with fundamental concepts and approaches to applying this and other complementary techniques, such as inverse photoemission, photoelectron diffraction, scanning tunneling spectroscopy, as well as photon spectroscopy based on (soft) x-ray absorption and resonance inelastic (soft) x-ray scattering. This book is the ideal tool to expand readers' understanding of this marvelously versatile experimental method, as well as the electronic structures of metals and insulators.
Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications provides a unique source of information in an important area of chemistry. Since Volume 40 the nature and ethos of this series have been altered to reflect a change of emphasis towards 'Techniques, Materials and Applications'. Researchers will now find up-to-date critical reviews which provide in-depth analyses of the leading papers in the field, with authors commenting of the quality and value of the work in a wider context. Focus areas will include structure-function relationships, photochemistry and spectroscopy of inorganic complexes, and catalysis; materials such as ceramics, cements, pigments, glasses and corrosion products; techniques such as advanced laser spectroscopy and theoretical methods.
This book presents new approaches that offer a better characterization of the interrelationship between crystalline and amorphous phases. In recent years, the use of dielectric spectroscopy has significantly improved our understanding of crystallization. The combination of modern scattering methods, using either synchrotron light or neutrons and infrared spectroscopy with dielectrics, is now helping to reveal modifications of both crystalline and amorphous phases. In turn, this yields insights into the underlying physics of the crystallization process in various materials, e.g. polymers, liquid crystals and diverse liquids. The book offers an excellent introduction to a valuable application of dielectric spectroscopy, and a helpful guide for every scientist who wants to study crystallization processes by means of dielectric spectroscopy.
Surface-Enhanced Raman Scattering (SERS) was discovered in the
1970s and has since grown enormously in breadth, depth, and
understanding. One of the major characteristics of SERS is its
interdisciplinary nature: it lies at the boundary between physics,
chemistry, colloid science, plasmonics, nanotechnology, and
biology. By their very nature, it is impossible to find a textbook
that will summarize the principles needed for SERS of these rather
dissimilar and disconnected topics. Although a basic understanding
of these topics is necessary for research projects in SERS with all
its many aspects and applications, they are seldom touched upon as
a coherent unit during most undergraduate studies in physics or
chemistry. This book intends to fill this existing gap in the
literature. It provides an overview of the underlying principles of
SERS, from the fundamental understanding of the effect to its
potential applications. It is aimed primarily at newcomers to the
field, graduate student, researcher or scientist, attracted by the
many applications of SERS and plasmonics or its basic science. The
emphasis is on concepts and background material for SERS, such as
Raman spectroscopy, the physics of plasmons, or colloid science,
all of them introduced within the context of SERS, and from where
the more specialised literature can be followed.
This volume of the CRM Conference Series is based on a carefully refereed selection of contributions presented at the "11th International Symposium on Quantum Theory and Symmetries", held in Montreal, Canada from July 1-5, 2019. The main objective of the meeting was to share and make accessible new research and recent results in several branches of Theoretical and Mathematical Physics, including Algebraic Methods, Condensed Matter Physics, Cosmology and Gravitation, Integrability, Non-perturbative Quantum Field Theory, Particle Physics, Quantum Computing and Quantum Information Theory, and String/ADS-CFT. There was also a special session in honour of Decio Levi. The volume is divided into sections corresponding to the sessions held during the symposium, allowing the reader to appreciate both the homogeneity and the diversity of mathematical tools that have been applied in these subject areas. Several of the plenary speakers, who are internationally recognized experts in their fields, have contributed reviews of the main topics to complement the original contributions.
This book offers selected contributions to fundamental research and application in designing and engineering materials. It focuses on mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, and turbine technology. This includes a wide range of material classes, like lightweight metallic materials, polymers, composites, and ceramics. Advanced applications include manufacturing using the new or newer materials, testing methods, and multi-scale experimental and computational aspects.
For almost a decade, quantitative NMR spectroscopy (qNMR) has been
established as valuable tool in drug analysis. In all disciplines,
i. e. drug identification, impurity profiling and assay, qNMR can
be utilized.
|
![]() ![]() You may like...
Towards Gender Equality in Law - An…
Gizem Guney, David Davies, …
Hardcover
R1,650
Discovery Miles 16 500
|