![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics
This book mainly focuses on the adaptive analysis of damage and fracture in rock, taking into account multiphysical fields coupling (thermal, hydro, mechanical, and chemical fields). This type of coupling is a crucial aspect in practical engineering for e.g. coal mining, oil and gas exploration, and civil engineering. However, understanding the influencing mechanisms and preventing the disasters resulting from damage and fracture evolution in rocks require high-precision and reliable solutions. This book proposes adaptive numerical algorithms and simulation analysis methods that offer significant advantages in terms of accuracy and reliability. It helps readers understand these innovative methods quickly and easily. The content consists of: (1) a finite element algorithm for modeling the continuum damage evolution in rocks, (2) adaptive finite element analysis for continuum damage evolution and determining the wellbore stability of transversely isotropic rock, (3) an adaptive finite element algorithm for damage detection in non-uniform Euler-Bernoulli beams with multiple cracks, using natural frequencies, (4) adaptive finite element-discrete element analysis for determining multistage hydrofracturing in naturally fractured reservoirs, (5) adaptive finite element-discrete element analysis for multistage supercritical CO2 fracturing and microseismic modeling, and (6) an adaptive finite element-discrete element-finite volume algorithm for 3D multiscale propagation of hydraulic fracture networks, taking into account hydro-mechanical coupling. Given its scope, the book offers a valuable reference guide for researchers, postgraduates and undergraduates majoring in engineering mechanics, mining engineering, geotechnical engineering, and geological engineering.
This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his graduate students, consisting of Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Democratic Particle Swarm Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which are developed by other authors and have been successfully applied to various optimization problems. These consist of Partical Swarm Optimization, Big Band Big Crunch algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm and Chaos Embedded Metaheuristic Algorithm. Finally a multi-objective Optimization is presented to Solve large scale structural problems based on the Charged System Search algorithm, In the second edition seven new chapters are added consisting of Enhance colliding bodies optimization, Global sensitivity analysis, Tug of War Optimization, Water evaporation optimization, Vibrating System Optimization and Cyclical Parthenogenesis Optimization algorithm. In the third edition, five new chapters are included consisting of the recently developed algorithms. These are Shuffled Shepherd Optimization Algorithm, Set Theoretical Shuffled Shepherd Optimization Algorithm, Set Theoretical Teaching-Learning-Based Optimization Algorithm, Thermal Exchange Metaheuristic Optimization Algorithm, and Water Strider Optimization Algorithm and Its Enhancement. The concepts and algorithm presented in this book are not only applicable to optimization of skeletal structure, finite element models, but can equally be utilized for optimal design of other systems such as hydraulic and electrical networks.
Formal analysis is the study of formal power series, formal Laurent series, formal root series, and other formal series or formal functionals. This book is the first comprehensive presentation of the topic that systematically introduces formal analysis, including its algebraic, analytic, and topological structure, along with various applications.
This book presents a multidisciplinary guide to gauge theory and gravity, with chapters by the world's leading theoretical physicists, mathematicians, historians and philosophers of science. The contributions from theoretical physics explore e.g. the consistency of the unification of gravitation and quantum theory, the underpinnings of experimental tests of gauge theory and its role in shedding light on the relationship between mathematics and physics. In turn, historians and philosophers of science assess the impact of Weyl's view on the philosophy of science. Graduate students, lecturers and researchers in the fields of history of science, theoretical physics and philosophy of science will benefit from this book by learning about the role played by Weyl's Raum-Zeit-Materie in shaping several modern research fields, and by gaining insights into the future prospects of gauge theory in both theoretical and experimental physics. Furthermore, the book facilitates interdisciplinary exchange and conceptual innovation in tackling fundamental questions about our deepest theories of physics. Chapter "Weyl's Raum-Zeit-Materie and the Philosophy of Science" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
This book presents material in two parts. Part one provides an introduction to crossed modules of groups, Lie algebras and associative algebras with fully written out proofs and is suitable for graduate students interested in homological algebra. In part two, more advanced and less standard topics such as crossed modules of Hopf algebra, Lie groups, and racks are discussed as well as recent developments and research on crossed modules.
The first critical work to attempt the mammoth undertaking of reading Badiou's Being and Event as part of a sequence has often surprising, occasionally controversial results. Looking back on its publication Badiou declared: "I had inscribed my name in the history of philosophy". Later he was brave enough to admit that this inscription needed correction. The central elements of Badiou's philosophy only make sense when Being and Event is read through the corrective prism of its sequel, Logics of Worlds, published nearly twenty years later. At the same time as presenting the only complete overview of Badiou's philosophical project, this book is also the first to draw out the central component of Badiou's ontology: indifference. Concentrating on its use across the core elements Being and Event-the void, the multiple, the set and the event-Watkin demonstrates that no account of Badiou's ontology is complete unless it accepts that Badiou's philosophy is primarily a presentation of indifferent being. Badiou and Indifferent Being provides a detailed and lively section by section reading of Badiou's foundational work. It is a seminal source text for all Badiou readers.
This book is about algebraic and differential methods, as well as fractional calculus, applied to diagnose and reject faults in nonlinear systems, which are of integer or fractional order. This represents an extension of a very important and widely studied problem in control theory, namely fault diagnosis and rejection (using differential algebraic approaches), to systems presenting fractional dynamics, i.e. systems whose dynamics are represented by derivatives and integrals of non-integer order. The authors offer a thorough overview devoted to fault diagnosis and fault-tolerant control applied to fractional-order and integer-order dynamical systems, and they introduce new methodologies for control and observation described by fractional and integer models, together with successful simulations and real-time applications. The basic concepts and tools of mathematics required to understand the methodologies proposed are all clearly introduced and explained. Consequently, the book is useful as supplementary reading in courses of applied mathematics and nonlinear control theory. This book is meant for engineers, mathematicians, physicists and, in general, to researchers and postgraduate students in diverse areas who have a minimum knowledge of calculus. It also contains advanced topics for researchers and professionals interested in the area of states and faults estimation.
Magic squares are among the more popular mathematical recreations. Over the last 50 years, many generalizations of "magic" ideas have been applied to graphs. Recently there has been a resurgence of interest in "magic labelings" due to a number of results that have applications to the problem of decomposing graphs into trees. Key features of this second edition include: . a new chapter on magic labeling of directed graphs . applications of theorems from graph theory and interesting counting arguments . new research problems and exercises covering a range of difficulties . a fully updated bibliography and index This concise, self-contained exposition is unique in its focus on the theory of magic graphs/labelings. It may serve as a graduate or advanced undergraduate text for courses in mathematics or computer science, and as reference for the researcher."
The present volume contains the Proceedings of the Seventh Iberoamerican Workshop in Orthogonal Polynomials and Applications (EIBPOA, which stands for Encuentros Iberoamericanos de Polinomios Ortogonales y Aplicaciones, in Spanish), held at the Universidad Carlos III de Madrid, Leganes, Spain, from July 3 to July 6, 2018.These meetings were mainly focused to encourage research in the fields of approximation theory, special functions, orthogonal polynomials and their applications among graduate students as well as young researchers from Latin America, Spain and Portugal. The presentation of the state of the art as well as some recent trends constitute the aim of the lectures delivered in the EIBPOA by worldwide recognized researchers in the above fields.In this volume, several topics on the theory of polynomials orthogonal with respect to different inner products are analyzed, both from an introductory point of view for a wide spectrum of readers without an expertise in the area, as well as the emphasis on their applications in topics as integrable systems, random matrices, numerical methods in differential and partial differential equations, coding theory, and signal theory, among others.
This book shows that research contributions from different fields-finance, economics, computer sciences, and physics-can provide useful insights into key issues in financial and cryptocurrency markets. Presenting the latest empirical and theoretical advances, it helps readers gain a better understanding of financial markets and cryptocurrencies. Bitcoin was the first cryptocurrency to use a peer-to-peer network to prevent double-spending and to control its issue without the need for a central authority, and it has attracted wide public attention since its introduction. In recent years, the academic community has also started gaining interest in cyptocurrencies, and research in the field has grown rapidly. This book presents is a collection of the latest work on cryptocurrency markets and the properties of those markets. This book will appeal to graduate students and researchers from disciplines such as finance, economics, financial engineering, computer science, physics and applied mathematics working in the field of financial markets, including cryptocurrency markets.
Is the invention of accounting so useful that, as Charlie Munger once said, "you have to know accounting. It's the language of practical business life. It was a very useful thing to deliver to civilization. I've heard it came to civilization through Venice which of course was once the great commercial power in the Mediterranean"? (WOO 2013) This positive view on accounting can be contrasted with an opposing view by Paul Browne that "the recent [accounting] scandals have brought a new level of attention to the accounting profession as gatekeepers and custodians of social interest." (DUM 2013) Contrary to these opposing views (and other ones as will be discussed in the book), accounting (in relation to addition and subtraction) are neither possible (or impossible) nor desirable (or undesirable) to the extent that the respective ideologues (on different sides) would like us to believe. Of course, this reexamination of different opposing views on accounting does not mean that the study of addition and subtraction is useless, or that those fields (related to accounting)-like bookkeeping, auditing, forensics, info management, finance, philosophy of accounting, accounting ethics, lean accounting, mental accounting, environmental audit, creative accounting, carbon accounting, social accounting, and so on-are unimportant. (WK 2013) In fact, neither of these extreme views is plausible. Rather, this book offers an alternative (better) way to understand the future of accounting in regard to the dialectic relationship between addition and subtraction-while learning from different approaches in the literature but without favoring any one of them (nor integrating them, since they are not necessarily compatible with each other). More specifically, this book offers a new theory (that is, the double-sided theory of accounting) to go beyond the existing approaches in a novel way and is organized in four chapters. This seminal project will fundamentally change the way that we think about accounting in relation to addition and subtraction from the combined perspectives of the mind, nature, society, and culture, with enormous implications for the human future and what I originally called its "post-human" fate.
This eighteenth volume in the Poincare Seminar Series provides a thorough description of Information Theory and some of its most active areas, in particular, its relation to thermodynamics at the nanoscale and the Maxwell Demon, and the emergence of quantum computation and of its counterpart, quantum verification. It also includes two introductory tutorials, one on the fundamental relation between thermodynamics and information theory, and a primer on Shannon's entropy and information theory. The book offers a unique and manifold perspective on recent mathematical and physical developments in this field.
This edited volume presents state-of-the-art developments in various areas in which Harmonic Analysis is applied. Contributions cover a variety of different topics and problems treated such as structure and optimization in computational harmonic analysis, sampling and approximation in shift invariant subspaces of L2( ), optimal rank one matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns, Hardy Littlewood series, Navier-Stokes equations, sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools, harmonic functions in slabs and half-spaces, Andoni -Krauthgamer -Razenshteyn characterization of sketchable norms fails for sketchable metrics, random matrix theory, multiplicative completion of redundant systems in Hilbert and Banach function spaces. Efforts have been made to ensure that the content of the book constitutes a valuable resource for graduate students as well as senior researchers working on Harmonic Analysis and its various interconnections with related areas.
This book discusses comprehensively the advanced manufacturing processes, including illustrative examples of the processes, mathematical modeling, and the need to optimize associated parameter problems. In addition, it describes in detail the cohort intelligence methodology and its variants along with illustrations, to help readers gain a better understanding of the framework. The theoretical and statistical rigor is validated by comparing the solutions with evolutionary algorithms, simulation annealing, response surface methodology, the firefly algorithm, and experimental work. Lastly, the book critically reviews several socio-inspired optimization methods.
The Hardy-Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
This book consists of three volumes. The first volume contains introductory accounts of topological dynamical systems, fi nite-state symbolic dynamics, distance expanding maps, and ergodic theory of metric dynamical systems acting on probability measure spaces, including metric entropy theory of Kolmogorov and Sinai. More advanced topics comprise infi nite ergodic theory, general thermodynamic formalism, topological entropy and pressure. Thermodynamic formalism of distance expanding maps and countable-alphabet subshifts of fi nite type, graph directed Markov systems, conformal expanding repellers, and Lasota-Yorke maps are treated in the second volume, which also contains a chapter on fractal geometry and its applications to conformal systems. Multifractal analysis and real analyticity of pressure are also covered. The third volume is devoted to the study of dynamics, ergodic theory, thermodynamic formalism and fractal geometry of rational functions of the Riemann sphere.
This book includes discussions related to solutions of such tasks as: probabilistic description of the investment function; recovering the income function from GDP estimates; development of models for the economic cycles; selecting the time interval of pseudo-stationarity of cycles; estimating characteristics/parameters of cycle models; analysis of accuracy of model factors. All of the above constitute the general principles of a theory explaining the phenomenon of economic cycles and provide mathematical tools for their quantitative description. The introduced theory is applicable to macroeconomic analyses as well as econometric estimations of economic cycles.
The book is a review of some basics notions in optics. The first chapter starts with a review of Newton's laws and planetary motion and some related equations. The second chapter deals with the planet earth's atmosphere; the third is an introduction to remote sensing. Chapter 4 and 5 introduce a background on Maxwell's laws in electromagnetism and light polarization. Some other topics of interest have been also developed. Among these topics are the light interaction with spherical surfaces and related equations, light Interference, linear polarization by anisotropy, Fourier transform spectroscopy, and an introduction to Lidar.
A Concise Introduction to Algebraic Varieties is designed for a one-term introductory course on algebraic varieties over an algebraically closed field, and it provides a solid basis for a course on schemes and cohomology or on specialized topics, such as toric varieties and moduli spaces of curves. The book balances generality and accessibility by presenting local and global concepts, such as nonsingularity, normality, and completeness using the language of atlases, an approach that is most commonly associated with differential topology. The book concludes with a discussion of the Riemann-Roch theorem, the Brill-Noether theorem, and applications. The prerequisites for the book are a strong undergraduate algebra course and a working familiarity with basic point-set topology. A course in graduate algebra is helpful but not required. The book includes appendices presenting useful background in complex analytic topology and commutative algebra and provides plentiful examples and exercises that help build intuition and familiarity with algebraic varieties.
|
![]() ![]() You may like...
Numerical Analysis
Annette M Burden, Richard Burden, …
Hardcover
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Financial Mathematics - A Computational…
K. Pereira, N. Modhien, …
Paperback
|