![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics
This book has been a work in progress since 1971 in which the author reveals his then, way out ideas and imaginations about the origin of the universe, religion, gender bias in language, future economic and social systems, future space travel and the rectification of PI in a peanutshell. Many of his ideas have now been proven, like the black hole theory and many other ideas are now being considered by the established authorities in their respective fields. And there are many other ramblings and reflections of an active mind that are still crazy but provocative and entertaining.
Computational fluid dynamics (CFD) and optimal shape design (OSD)
are of practical importance for many engineering applications - the
aeronautic, automobile, and nuclear industries are all major users
of these technologies.
This book is devoted to game theory and its applications to environmental problems, economics, and management. It collects contributions originating from the 12th International Conference on "Game Theory and Management" 2018 (GTM2018) held at Saint Petersburg State University, Russia, from 27 to 29 June 2018.
The 5th edition of Calculus: Early Transcendental Functions maintains the critical components for which this calculus text is well known: facilitating mastery of prerequisite algebra and trigonometry skills, offering an elegant presentation of calculus concepts that is rigorous yet accessible, and including classic calculus problems such as applications for STEM and business disciplines. Key features of the new edition: The new edition benefits from an accessible layout and presentation of graphs for topics like limits and continuity and area under the curve. A thorough revision has been carried out of all end-of-chapter problems and exercises and 120 new exercises have been added to the text and Connect. Introduction of "mind mapping" to help students understand the nature of calculus problems and develop problem-solving techniques that integrate multiple pieces of information. Improved approach to integration by starting with the antiderivatives. The inclusion of tabular integration by parts in Chapter 6. Enhanced coverage of first-order linear differential equations in Chapter 7. Two new sections on Laplace transforms have been introduced in Chapter 15, as well as material on how to solve second-order differential equations using Laplace transforms.
Based on the "Fourth International Conference on Dynamics of Disasters" (Kalamata, Greece, July 2019), this volume includes contributions from experts who share their latest discoveries on natural and unnatural disasters. Authors provide overviews of the tactical points involved in disaster relief, outlines of hurdles from mitigation and preparedness to response and recovery, and uses for mathematical models to describe natural and man-made disasters. Topics covered include economics, optimization, machine learning, government, management, business, humanities, engineering, medicine, mathematics, computer science, behavioral studies, emergency services, and environmental studies will engage readers from a wide variety of fields and backgrounds.
An infinite-dimensional manifold is a topological manifold modeled on some infinite-dimensional homogeneous space called a model space. In this book, the following spaces are considered model spaces: Hilbert space (or non-separable Hilbert spaces), the Hilbert cube, dense subspaces of Hilbert spaces being universal spaces for absolute Borel spaces, the direct limit of Euclidean spaces, and the direct limit of Hilbert cubes (which is homeomorphic to the dual of a separable infinite-dimensional Banach space with bounded weak-star topology). This book is designed for graduate students to acquire knowledge of fundamental results on infinite-dimensional manifolds and their characterizations. To read and understand this book, some background is required even for senior graduate students in topology, but that background knowledge is minimized and is listed in the first chapter so that references can easily be found. Almost all necessary background information is found in Geometric Aspects of General Topology, the author's first book. Many kinds of hyperspaces and function spaces are investigated in various branches of mathematics, which are mostly infinite-dimensional. Among them, many examples of infinite-dimensional manifolds have been found. For researchers studying such objects, this book will be very helpful. As outstanding applications of Hilbert cube manifolds, the book contains proofs of the topological invariance of Whitehead torsion and Borsuk's conjecture on the homotopy type of compact ANRs. This is also the first book that presents combinatorial -manifolds, the infinite-dimensional version of combinatorial n-manifolds, and proofs of two remarkable results, that is, any triangulation of each manifold modeled on the direct limit of Euclidean spaces is a combinatorial -manifold and the Hauptvermutung for them is true.
AN INTRODUCTION TO DIFFERENTIAL GEOMETRY WITH USE OF THE TENSOR CALCULUS By LUTHER PFAHLER EISENHART. Preface: Since 1909, when my Differential Geometry of Curves and Surfaces was published, the tensor calculus, which had previously been invented by Ricci, was adopted by Einstein in his General Theory of Relativity, and has been developed further in the study of Riemannian Geometry and various generalizations of the latter. In the present book the tensor calculus of cuclidean 3-space is developed and then generalized so as to apply to a Riemannian space of any number of dimensions. The tensor calculus as here developed is applied in Chapters III and IV to the study of differential geometry of surfaces in 3-space, the material treated being equivalent to what appears in general in the first eight chapters of my former book with such additions as follow from the introduction of the concept of parallelism of Levi-Civita and the content of the tensor calculus. LUTHER PFAHLER EISENHART. Contents include: CHAPTER I CURVES IN SPACE SECTION PAGE 1. Curves ami surfaces. The summation convention 1 2. Length of a curve. Linear element, 8 3. Tangent to a curve. Order of contact. Osculating plane 11 4. Curvature. Principal normal. Circle of curvature 16 5. TBi normal. Torsion 19 6r The Frenet Formulas. The form of a curve in the neighborhood of a point 25 7. Intrinsic equations of a curve 31 8. Involutes and evolutes of a curve 34 9. The tangent surface of a curve. The polar surface. Osculating sphere. . 38 10. Parametric equations of a surface. Coordinates and coordinate curves trT a surface 44 11. 1 Tangent plane to a surface 50 tSffDovelopable surfaces. Envelope of a one-parameter family ofsurfaces. . 53 CHAPTER II TRANSFORMATION OF COORDINATES. TENSOR CALCULUS 13. Transformation of coordinates. Curvilinear coordinates 63 14. The fundamental quadratic form of space 70 15. Contravariant vectors. Scalars 74 16. Length of a contravariant vector. Angle between two vectors 80 17. Covariant vectors. Contravariant and covariant components of a vector 83 18. Tensors. Symmetric and skew symmetric tensors 89 19. Addition, subtraction and multiplication of tensors. Contraction.... 94 20. The Christoffel symbols. The Riemann tensor 98 21. The Frenet formulas in general coordinates 103 22. Covariant differentiation 107 23. Systems of partial differential equations of the first order. Mixed systems 114 CHAPTER III INTRINSIC GEOMETRY OF A SURFACE 24. Linear element of a surface. First fundamental quadratic form of a surface. Vectors in a surface 123 25. Angle of two intersecting curves in a surface. Element of area 129 26. Families of curves in a surface. Principal directions 138 27. The intrinsic geometry of a surface. Isometric surfaces 146 28. The Christoffel symbols for a surface. The Riemannian curvature tensor. The Gaussian curvature of a surface 149 29. Differential parameters 155 30. Isometric orthogonal nets. Isometric coordinates 161 31...
Progress in mathematics is based on a thorough understanding of the mathematical objects under consideration, and yet many textbooks and monographs proceed to discuss general statements and assume that the reader can and will provide the mathematical infrastructure of examples and counterexamples. This book makes a deliberate effort to correct this situation: it is a collection of examples. The following table of contents describes its breadth and reveals the underlying motivation--differential geometry--in its many facets: Riemannian, symplectic, K*adahler, hyperK*adahler, as well as complex and quaternionic.
In this enjoyable and lightheaded volume, he gathers a plethora of cultural, biological, geometrical, algebraic, and planetary phenomena of our lives related to the number five. He investigates these occurrences in various facets of life on earth and seeks plausible explanations for some of them and hypothesizes about some others while widening your horizon.
Graphs and Networks A unique blend of graph theory and network science for mathematicians and data science professionals alike. Featuring topics such as minors, connectomes, trees, distance, spectral graph theory, similarity, centrality, small-world networks, scale-free networks, graph algorithms, Eulerian circuits, Hamiltonian cycles, coloring, higher connectivity, planar graphs, flows, matchings, and coverings, Graphs and Networks contains modern applications for graph theorists and a host of useful theorems for network scientists. The book begins with applications to biology and the social and political sciences and gradually takes a more theoretical direction toward graph structure theory and combinatorial optimization. A background in linear algebra, probability, and statistics provides the proper frame of reference. Graphs and Networks also features: Applications to neuroscience, climate science, and the social and political sciences A research outlook integrated directly into the narrative with ideas for students interested in pursuing research projects at all levels A large selection of primary and secondary sources for further reading Historical notes that hint at the passion and excitement behind the discoveries Practice problems that reinforce the concepts and encourage further investigation and independent work
This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Levy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Levy processes, and the Malliavin calculus.
This book deals with mathematical modeling, namely, it describes the mathematical model of heat transfer in a silicon cathode of small (nano) dimensions with the possibility of partial melting taken into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type free boundary problems. The approach used is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation. The results of numerical simulation concludes the book. The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.
"Philosophy of Mathematics: An Introduction" provides a critical
analysis of the major philosophical issues and viewpoints in the
concepts and methods of mathematics - from antiquity to the modern
era.
This book offers essential, systematic information on the assessment of the spatial association between two processes from a statistical standpoint. Divided into eight chapters, the book begins with preliminary concepts, mainly concerning spatial statistics. The following seven chapters focus on the methodologies needed to assess the correlation between two or more processes; from theory introduced 35 years ago, to techniques that have only recently been published. Furthermore, each chapter contains a section on R computations to explore how the methodology works with real data. References and a list of exercises are included at the end of each chapter. The assessment of the correlation between two spatial processes has been tackled from several different perspectives in a variety of applications fields. In particular, the problem of testing for the existence of spatial association between two georeferenced variables is relevant for posterior modeling and inference. One evident application in this context is the quantification of the spatial correlation between two images (processes defined on a rectangular grid in a two-dimensional space). From a statistical perspective, this problem can be handled via hypothesis testing, or by using extensions of the correlation coefficient. In an image-processing framework, these extensions can also be used to define similarity indices between images.
This handbook is the fourth volume in a series of volumes devoted
to self-contained and up-to-date surveys in the theory of ordinary
differential equations, with an additional effort to achieve
readability for mathematicians and scientists from other related
fields so that the chapters have been made accessible to a wider
audience.
This handbook is the sixth and last volume in the series devoted to
stationary partial differential equations. The topics covered by
this volume include in particular domain perturbations for boundary
value problems, singular solutions of semilinear elliptic problems,
positive solutions to elliptic equations on unbounded domains,
symmetry of solutions, stationary compressible Navier-Stokes
equation, Lotka-Volterra systems with cross-diffusion, and fixed
point theory for elliptic boundary value problems.
This book focuses on gyro-free inertial navigation technology, which is used to measure not only linear motion parameters but also angular rates. Since no gyroscopes are used, the key technologies, such as initial alignment, attitude resolution, and error calibration, are very different than those used in traditional methods. Discussing each key technology in gyro-free inertial navigation system (GFINS) manufacture in a separate chapter, the book features easy-to-understand, detailed illustrations, to allow all those involved in inertial navigation to gain a better grasp of GFINS manufacture, including accelerometer setting principles; initial alignment; quaternion-based, attitude resolution algorithms; and accelerometer de-noise methods.
Recent advances in scientific computing have caused the field of aerodynamics to change at a rapid pace, simplifying the design cycle of aerospace vehicles enormously - this book takes the readers from core concepts of aerodynamics to recent research, using studies and real-life scenarios to explain problems and their solutions. This book presents in detail the important concepts in computational aerodynamics and aeroacoustics taking readers from the fundamentals of fluid flow and aerodynamics to a more in-depth analysis of acoustic waves, aeroacoustics, computational modelling and processing. This book will be of use to students in multiple branches of engineering, physics and applied mathematics. Additionally, the book can also be used as a text in professional development courses for industry engineers and as a self-help reference for active researchers in both academia and the industry.
This book brings together ideas from experts in cognitive science, mathematics, and mathematics education to discuss these issues and to present research on how mathematics and its learning and teaching are evolving in the Information Age. Given the ever-broadening trends in Artificial Intelligence and the processing of information generally, the aim is to assess their implications for how math is evolving and how math should now be taught to a generation that has been reared in the Information Age. It will also look at the ever-spreading assumption that human intelligence may not be unique-an idea that dovetails with current philosophies of mind such as posthumanism and transhumanism. The role of technology in human evolution has become critical in the contemporary world. Therefore, a subgoal of this book is to illuminate how humans now use their sophisticated technologies to chart cognitive and social progress. Given the interdisciplinary nature of the chapters, this will be of interest to all kinds of readers, from mathematicians themselves working increasingly with computer scientists, to cognitive scientists who carry out research on mathematics cognition and teachers of mathematics in a classroom.
This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Goedel's classical completeness and incompleteness theorems. In particular, the book includes a full proof of Goedel's second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo's axioms, containing a presentation of Goedel's constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.
This book reports on current challenges in bridge engineering faced by professionals around the globe, giving a special emphasis to recently developed techniques and methods for bridge design, construction and monitoring. Based on extended and revised papers selected from outstanding presentation at the Istanbul Bridge Conference 2018, held from November 5 - 6, 2018, in Istanbul, Turkey, and by highlighting major bridge studies, spanning from numerical and modeling studies to the applications of new construction techniques and monitoring systems, this book is intended to promote high standards in modern bridge engineering. It offers a timely reference to both academics and professionals in this field. |
![]() ![]() You may like...
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
|