![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics
This book introduces the reliability modelling and optimization of warm standby systems. Warm standby is an attractive redundancy technique, as it consumes less energy than hot standby and switches into the active state faster than cold standby. Since a warm standby component experiences different failure rates in the standby state and active state, the reliability evaluation is challenging and the existing works are only restricted to very special cases. By adapting the decision diagrams, this book proposes the methodology to evaluate the reliability of different types of warm standby systems and studies the reliability optimization. Compared with existing works, the proposed methods allow the system to have an arbitrary number of components and allow the failure time distribution of components to observe arbitrary distributions. From this book, the readers can not only learn how to evaluate and optimize the reliability of warm standby systems but also use the methods to study the reliability of other complex systems.
This book focuses on logic and logical language. It examines different types of words, terms and propositions in detail. While discussing the nature of propositions, it illustrates the procedures used to determine the truth and falsity of a proposition, and the validity and invalidity of an argument. In addition, the book provides a clear exposition of the pure and mixed form of syllogism with suitable examples. The book encompasses sentential logic, predicate logic, symbolic logic, induction and set theory topics. The book is designed to serve all those involved in teaching and learning courses on logic. It offers a valuable resource for students and researchers in philosophy, mathematics and computer science disciplines. Given its scope, it is an essential read for everyone interested in logic, language, formulation of the hypotheses for the scientific enquiries and research studies, and judging valid and invalid arguments in the natural language discourse.
The Workshop for Women in Graph Theory and Applications was held at the Institute for Mathematics and Its Applications (University of Minnesota, Minneapolis) on August 19-23, 2019. During this five-day workshop, 42 participants performed collaborative research, in six teams, each focused on open problems in different areas of graph theory and its applications. The research work of each team was led by two experts in the corresponding area, who prior to the workshop, carefully selected relevant and meaningful open problems that would yield high-quality research and results of strong impact. As a result, all six teams have made significant contributions to several open problems in their respective areas. The workshop led to the creation of the Women in Graph Theory and Applications Research Collaboration Network, which provided the framework to continue collaborating and to produce this volume. This book contains six chapters, each of them on one of the different areas of research at the Workshop for Women in Graph Theory and Applications, and written by participants of each team.
This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives.
This book discusses quantum theory as the theory of random (Brownian) motion of small particles (electrons etc.) under external forces. Implying that the Schroedinger equation is a complex-valued evolution equation and the Schroedinger function is a complex-valued evolution function, important applications are given. Readers will learn about new mathematical methods (theory of stochastic processes) in solving problems of quantum phenomena. Readers will also learn how to handle stochastic processes in analyzing physical phenomena.
This monograph explores classical electrodynamics from a geometrical perspective with a clear visual presentation throughout. Featuring over 200 figures, readers will delve into the definitions, properties, and uses of directed quantities in classical field theory. With an emphasis on both mathematical and electrodynamic concepts, the author's illustrative approach will help readers understand the critical role directed quantities play in physics and mathematics. Chapters are organized so that they gradually scale in complexity, and carefully guide readers through important topics. The first three chapters introduce directed quantities in three dimensions with and without the metric, as well as the development of the algebra and analysis of directed quantities. Chapters four through seven then focus on electrodynamics without the metric, such as the premetric case, waves, and fully covariant four-dimensional electrodynamics. Complementing the book's careful structure, exercises are included throughout for readers seeking further opportunities to practice the material. Directed Quantities in Electrodynamics will appeal to students, lecturers, and researchers of electromagnetism. It is particularly suitable as a supplement to standard textbooks on electrodynamics.
This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems - MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.
The 4th World Congress on Genetics, Geriatrics and Neurodegenerative Diseases Research (GeNeDis 2020) focuses on the latest major challenges in scientific research, new drug targets, the development of novel biomarkers, new imaging techniques, novel protocols for early diagnosis of neurodegenerative diseases, and several other scientific advances, with the aim of better, safer, and healthier aging. Computational methodologies for implementation on the discovery of biomarkers for neurodegenerative diseases are extensively discussed. This volume focuses on the sessions from the conference regarding computational biology and bioinformatics.
Local structures, like differentiable manifolds, fibre bundles, vector bundles and foliations, can be obtained by gluing together a family of suitable 'elementary spaces', by means of partial homeomorphisms that fix the gluing conditions and form a sort of 'intrinsic atlas', instead of the more usual system of charts living in an external framework.An 'intrinsic manifold' is defined here as such an atlas, in a suitable category of elementary spaces: open euclidean spaces, or trivial bundles, or trivial vector bundles, and so on.This uniform approach allows us to move from one basis to another: for instance, the elementary tangent bundle of an open Euclidean space is automatically extended to the tangent bundle of any differentiable manifold. The same holds for tensor calculus.Technically, the goal of this book is to treat these structures as 'symmetric enriched categories' over a suitable basis, generally an ordered category of partial mappings.This approach to gluing structures is related to Ehresmann's one, based on inductive pseudogroups and inductive categories. A second source was the theory of enriched categories and Lawvere's unusual view of interesting mathematical structures as categories enriched over a suitable basis.
Chance rules our daily lives in many different ways. From the outcomes of the lottery to the outcomes of medical tests, from the basketball court to the court of law. The ways of chance are capricious. Bizarre things happen all the time. Nevertheless, chance has a logic of its own. It obeys the rules of probability. But if you open a standard book on probability, you may very well feel far removed from everyday life. Abstract formulas and mathematical symbols stare back at you with almost every turn of the page.This book introduces you to the logic of chance without the use of mathematical formulas or symbols. In Part One, you will meet the fascinating pioneers of the mathematics of probability, including Galileo Galilei and Blaise Pascal. Their stories will introduce you, step by step, to the basics of probability. In Part Two, various examples in all areas of daily life will show you how chance defies our expectations time and again. But armed with the basic rules of probability and a good dose of inventiveness, you will be able to unravel the counter-intuitive logic of chance.
The main subject of this introductory book is simple random walk on the integer lattice, with special attention to the two-dimensional case. This fascinating mathematical object is the point of departure for an intuitive and richly illustrated tour of related topics at the active edge of research. It starts with three different proofs of the recurrence of the two-dimensional walk, via direct combinatorial arguments, electrical networks, and Lyapunov functions. After reviewing some relevant potential-theoretic tools, the reader is guided toward the relatively new topic of random interlacements - which can be viewed as a 'canonical soup' of nearest-neighbour loops through infinity - again with emphasis on two dimensions. On the way, readers will visit conditioned simple random walks - which are the 'noodles' in the soup - and also discover how Poisson processes of infinite objects are constructed and review the recently introduced method of soft local times. Each chapter ends with many exercises, making it suitable for courses and independent study.
This book summarizes research being pursued within the Research Unit FOR 2089, funded by the German Research Foundation (DFG), the goal of which is to develop the scientific base for a paradigm shift towards dimensioning, structural realization and maintenance of pavements, and prepare road infrastructure for future requirements. It provides a coupled thermo-mechanical model for a holistic physical analysis of the pavement-tire-vehicle system: based on this model, pavement structures and materials can be optimized so that new demands become compatible with the main goal - durability of the structures and the materials. The development of these new and qualitatively improved modelling approaches requires a holistic procedure through the coupling of theoretical numerical and experimental approaches as well as an interdisciplinary and closely linked handling of the coupled pavement-tire-vehicle system. This interdisciplinary research provides a deeper understanding of the physics of the full system through complex, coupled simulation approaches and progress in terms of improved and, therefore, more durable and sustainable structures.
Flatland is a fascinating nineteenth century work - an utterly unique combination of multi-plane geometry, social satire and whimsy. Although its original publication went largely unnoticed, the discoveries of later physicists brought it new recognition and respect, and its popularity since has justly never waned. It remains a charming and entertaining read, and a brilliant introduction to the concept of dimensions beyond those we can perceive. This is a reworking of the expanded 2nd edition of 1884, with particularly large, clear text, and all the original author's illustrations.
Susanna Epp's DISCRETE MATHEMATICS WITH APPLICATIONS, 4e, International Edition provides a clear introduction to discrete mathematics. Renowned for her lucid, accessible prose, Epp explains complex, abstract concepts with clarity and precision. This book presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography, and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to the science and technology of the computer age. Overall, Epp's emphasis on reasoning provides students with a strong foundation for computer science and upper-level mathematics courses.
This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role - a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems - for instance, proteins - asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.
This book analyses the models for major risks related to flight safety in the aviation sector and presents risk estimation methods through examples of several known aviation enterprises. The book provides a comprehensive content for professionals engaged in the development of flight safety regulatory framework as well as in the design and operation of ground-based or on-board flight support radio electronic systems. The book is also useful for senior students and postgraduates in aviation specialties, especially those related to air traffic management.
This book provides a comprehensive examination of preconditioners for boundary element discretisations of first-kind integral equations. Focusing on domain-decomposition-type and multilevel methods, it allows readers to gain a good understanding of the mechanisms and necessary techniques in the analysis of the preconditioners. These techniques are unique for the discretisation of first-kind integral equations since the resulting systems of linear equations are not only large and ill-conditioned, but also dense. The book showcases state-of-the-art preconditioning techniques for boundary integral equations, presenting up-to-date research. It also includes a detailed discussion of Sobolev spaces of fractional orders to familiarise readers with important mathematical tools for the analysis. Furthermore, the concise overview of adaptive BEM, hp-version BEM, and coupling of FEM-BEM provides efficient computational tools for solving practical problems with applications in science and engineering. |
![]() ![]() You may like...
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Mathematical Modelling - Education…
C Haines, P. Galbraith, …
Paperback
STEM Research for Students Volume 1…
Julia H Cothron, Ronald N Giese, …
Hardcover
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
|