![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics
Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book's dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented. The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference. In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book. The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics.
An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture.
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the book delves deeper into the properties of the principal eigenvector; a critical subject as many of the results on the spectral radius of graphs rely on the properties of the principal eigenvector for their proofs. A following chapter surveys spectral radius of special graphs, covering multipartite graphs, non-regular graphs, planar graphs, threshold graphs, and others. Finally, the work explores results on the structure of graphs having extreme spectral radius in classes of graphs defined by fixing the value of a particular, integer-valued graph invariant, such as: the diameter, the radius, the domination number, the matching number, the clique number, the independence number, the chromatic number or the sequence of vertex degrees. Throughout, the text includes the valuable addition of proofs to accompany the majority of presented results. This enables the reader to learn tricks of the trade and easily see if some of the techniques apply to a current research problem, without having to spend time on searching for the original articles. The book also contains a handful of open problems on the topic that might provide initiative for the reader's research.
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a suffi cient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of fl exible ellipsoid covers of n that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
This monograph aims to provide for the first time a unified and homogenous presentation of the recent works on the theory of Bloch periodic functions, their generalizations, and their applications to evolution equations. It is useful for graduate students and beginning researchers as seminar topics, graduate courses and reference text in pure and applied mathematics, physics, and engineering.
This book uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab (or its free cousin, Octave) and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation analysis using the version of AUTO embedded in Xppaut, are provided. This book also provides a survey that can be taught in a single academic term covering a greater variety of dynamical systems (discrete versus continuous time, finite versus infinite-dimensional, dissipative versus conservative) than is normally seen in introductory texts. Numerical computation and linear stability analysis are used as unifying themes throughout the book. Despite the emphasis on computer calculations, theory is not neglected, and fundamental concepts from the field of nonlinear dynamics such as solution maps and invariant manifolds are presented.
Since the earliest days of human existence, the clash of thunder and trembling of the hills has struck fear into the hearts of seasoned warriors and tribal villagers alike. Great gods, demi-gods, and heroes were created to explain the awesome, mysterious, and incomprehensibly powerful forces of Nature in a feeble attempt to make sense of the world around them. To our advanced scientific minds today, these explanations seem childish and ridiculous; however, the power to flatten thousands of square miles of ancient forest, create massive holes in the Earth itself, and cause mountains to tremble to their very roots are more than enough reason to believe. Indeed, perhaps our scientific advancement has caused us to not fully or completely appreciate the awesome scale and power that Nature can wield against us. The study of shock wave formation and dynamics begins with a study of waves themselves. Simple harmonic motion is used to analyze the physical mechanisms of wave generation and propagation, and the principle of superposition is used to mathematically generate constructive and destructive interference. Further development leads to the shock singularity where a single wave of immense magnitude propagates and decays through various media. Correlations with the fields of thermodynamics, meteorology, crater formation, and acoustics are made, as well as a few special applications. Direct correlation is made to events in Arizona, Siberia, and others. The mathematical requirement for this text includes trigonometry, differential equations, and large series summations, which should be accessible to most beginning and advanced university students. This text should serve well as supplementary material in a course covering discrete wave dynamics, applied thermodynamics, or extreme acoustics.
This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. Multivariate nonlinear statistical models require the study of higher-order moments and cumulants. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis. A general test of multivariate skewness and kurtosis is obtained from this treatment. Exercises are provided for each chapter to help the readers understand the methods. Lastly, the book includes a comprehensive list of references, equipping readers to explore further on their own.
Lectures on Differential Equations provides a clear and concise presentation of differential equations for undergraduates and beginning graduate students. There is more than enough material here for a year-long course. In fact, the text developed from the author's notes for three courses: the undergraduate introduction to ordinary differential equations, the undergraduate course in Fourier analysis and partial differential equations, and a first graduate course in differential equations. The first four chapters cover the classical syllabus for the undergraduate ODE course leavened by a modern awareness of computing and qualitative methods. The next two chapters contain a well-developed exposition of linear and nonlinear systems with a similarly fresh approach. The final two chapters cover boundary value problems, Fourier analysis, and the elementary theory of PDEs. The author makes a concerted effort to use plain language and to always start from a simple example or application. The presentation should appeal to, and be readable by, students, especially students in engineering and science. Without being excessively theoretical, the book does address a number of unusual topics: Massera's theorem, Lyapunov's inequality, the isoperimetric inequality, numerical solutions of nonlinear boundary value problems, and more. There are also some new approaches to standard topics including a rethought presentation of series solutions and a nonstandard, but more intuitive, proof of the existence and uniqueness theorem. The collection of problems is especially rich and contains many very challenging exercises. Philip Korman is professor of mathematics at the University of Cincinnati. He is the author of over one hundred research articles in differential equations and the monograph Global Solution Curves for Semilinear Elliptic Equations. Korman has served on the editorial boards of Communications on Applied Nonlinear Analysis, Electronic Journal of Differential Equations, SIAM Review, and Differential Equations and Applications.
Ideal for college students in intermediate finance courses, this book uniquely applies mathematical formulas to teach the underpinnings of financial and lending decisions, covering common applications in real estate, capital budgeting, and commercial loans. An updated and expanded version of the time-honored classic text on financial math, this book provides, in one place, a complete and practical treatment of the four primary venues for finance: commercial lending, financial formulas, mortgage lending, and resource allocation or capital budgeting techniques. With an emphasis on understanding the principles involved rather than blind reliance on formulas, the book provides rigorous and thorough explanations of the mathematical calculations used in determining the time value of money, valuation of loans by commercial banks, valuation of mortgages, and the cost of capital and capital budgeting techniques for single as well as mutually exclusive projects. This new edition devotes an entire chapter to a method of evaluating mutually exclusive projects without resorting to any imposed conditions. Two chapters not found in the previous edition address special topics in finance, including a novel and innovative way to approach amortization tables and the time value of money for cash flows when they increase geometrically or arithmetically. This new edition also features helpful how-to sections on Excel applications at the end of each appropriate chapter. Lays the foundation of all the topics that are typically covered in a financial management textbook or class Demonstrates how the mastery of a few basic concepts-such as the time value of money under all possible situations-allows for a precise understanding of more complex topics in finance Describes how all advanced capital budgeting techniques can be reduced to the simplest technique-the payback period method Examines traditional financial techniques using simple interest rate and accounting rate of return methods to conclusively show how these practices are now defunct
The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.
Quantum mechanics is one of the most fascinating, and at the same time most controversial, branches of contemporary science. Disputes have accompanied this science since its birth and have not ceased to this day. "Uncommon Paths in Quantum Physics" allows the reader to
contemplate deeply some ideas and methods that are seldom met in
the contemporary literature. Instead of widespread recipes of
mathematical physics, based on the solutions of
integro-differential equations, the book follows logical and partly
intuitional derivations of non-commutative algebra. Readers can
directly penetrate the abstract world of quantum mechanics.
This book presents the state-of-the-art methods in Linear Integer Programming, including some new algorithms and heuristic methods developed by the authors in recent years. Topics as Characteristic equation (CE), application of CE to bi-objective and multi-objective problems, Binary integer problems, Mixed-integer models, Knapsack models, Complexity reduction, Feasible-space reduction, Random search, Connected graph are also treated. |
![]() ![]() You may like...
Well-Quasi Orders in Computation, Logic…
Peter M. Schuster, Monika Seisenberger, …
Hardcover
R4,944
Discovery Miles 49 440
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R4,171
Discovery Miles 41 710
Research Trends in Graph Theory and…
Daniela Ferrero, Leslie Hogben, …
Hardcover
R3,543
Discovery Miles 35 430
Technological Innovation for Applied AI…
Luis M. Camarinha-Matos, Pedro Ferreira, …
Hardcover
R3,419
Discovery Miles 34 190
The Measurement of Association - A…
Kenneth J. Berry, Janis E. Johnston, …
Hardcover
R4,487
Discovery Miles 44 870
Software Engineering for Robotics
Ana Cavalcanti, Brijesh Dongol, …
Hardcover
R3,456
Discovery Miles 34 560
|