![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
Aligning the latest practices, innovations and case studies with academic frameworks and theories, the broad area of multi-criteria and game theory applications in manufacturing and logistics is covered in comprehensive detail. Divided into two parts, part I is dedicated to 'multi-criteria applications' and includes chapters on logistics with a focus on vehicle routing problems, a multi-objective decision making approach to select the best storage policy and an exploratory study to predict the most important factors that can lead to successful mobile supply chain management adoption for manufacturing firms. Part II covers 'game theory applications' and encompasses the process of forming a coalition within a corporate network to the problem of integrating inventory and distribution optimization together with game theory to effectively manage supply networks. Providing a forum to investigate, exchange novel ideas and disseminate knowledge covering the broad area of multi-criteria and game theory applications in manufacturing and logistics, Applications of Multi-Criteria and Game Theory Approaches is an excellent reference for students, researchers but also managers and industry professionals working with manufacturing and logistics issues.
Written by an international group of active researchers in the field, this volume presents innovative formulations and applied procedures for sensitivity analysis and structural design optimization. Eight chapters discuss subjects ranging from recent developments in the determination and application of topological gradients, to the use of evolutionary algorithms and meta-models to solve practical engineering problems. With such a comprehensive set of contributions, the book is a valuable source of information for graduate students and researchers entering or working in the matter.
Heinrich von Stackelberg's book, "Grundlagen einer reinen Kostentheorie", published in 1932 was at the forefront of a growing conceptual revolution in the theory of the firm, a theory which appears more relevant than ever in today's economic climate. In this work, Stackelberg masterfully built a theoretical framework which he later developed in Market Structure and Equilibrium. Foundations of a Pure Cost Theory represents the first translation of the original German version into English. This substantial book offers readers a critical and technical understanding of the firm, how firms function and the environments in which they operate. Fundamental notions of cost production, market economy, optimum position and velocities of production are given prominence. Ultimately, this work, which remains largely unknown, can be seen as a milestone text in our understanding of the strategies adopted by firms as a whole. The book has been meticulously translated from the German into English, retaining the author's examples in their historical context and capturing the spirit of the time with all its subtlety and significance.
Experimental Econophysics describes the method of controlled human experiments, which is developed by physicists to study some problems in economics or finance, namely, stylized facts, fluctuation phenomena, herd behavior, contrarian behavior, hedge behavior, cooperation, business cycles, partial information, risk management, and stock prediction. Experimental econophysics together with empirical econophysics are two branches of the field of econophysics. The latter one has been extensively discussed in the existing books, while the former one has been seldom touched. In this book, the author will focus on the branch of experimental econophysics. Empirical econophysics is based on the analysis of data in real markets by using some statistical tools borrowed from traditional statistical physics. Differently, inspired by the role of controlled experiments and system modelling (for computer simulations and/or analytical theory) in developing modern physics, experimental econophysics specially relies on controlled human experiments in the laboratory (producing data for analysis) together with agent-based modelling (for computer simulations and/or analytical theory), with an aim at revealing the general cause-effect relationship between specific parameters and emergent properties of real economic/financial markets. This book covers the basic concepts, experimental methods, modelling approaches, and latest progress in the field of experimental econophysics.
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality and applications in economics among other things.
The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the latest information.
The book focuses on Social Collective Intelligence, a term used to denote a class of socio-technical systems that combine, in a coordinated way, the strengths of humans, machines and collectives in terms of competences, knowledge and problem solving capabilities with the communication, computing and storage capabilities of advanced ICT. Social Collective Intelligence opens a number of challenges for researchers in both computer science and social sciences; at the same time it provides an innovative approach to solve challenges in diverse application domains, ranging from health to education and organization of work. The book will provide a cohesive and holistic treatment of Social Collective Intelligence, including challenges emerging in various disciplines (computer science, sociology, ethics) and opportunities for innovating in various application areas. By going through the book the reader will gauge insight and knowledge into the challenges and opportunities provided by this new, exciting, field of investigation. Benefits for scientists will be in terms of accessing a comprehensive treatment of the open research challenges in a multidisciplinary perspective. Benefits for practitioners and applied researchers will be in terms of access to novel approaches to tackle relevant problems in their field. Benefits for policy-makers and public bodies representatives will be in terms of understanding how technological advances can support them in supporting the progress of society and economy.
Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.
This collection of papers investigates the most recent debates about individualism and holism in the philosophy of social science. The debates revolve mainly around two issues: firstly, whether social phenomena exist sui generis and how they relate to individuals. This is the focus of discussions between ontological individualists and ontological holists. Secondly, to what extent social scientific explanations may and should, focus on individuals and social phenomena respectively. This issue is debated amongst methodological holists and methodological individualists. In social science and philosophy, both issues have been intensively discussed and new versions of the dispute have appeared just as new arguments have been advanced. At present, the individualism/holism debate is extremely lively and this book reflects the major positions and perspectives within the debate. This volume is also relevant to debates about two closely related issues in social science: the micro-macro debate and the agency-structure debate. This book presents contributions from key figures in both social science and philosophy, in the first such collection on this topic to be published since the 1970s.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
This book opens new avenues in understanding mathematical models within the context of a transition economy. The exposition lays out the methods for combining different mathematical structures and tools to effectively build the next model that will accurately reflect real world economic processes. Mathematical modeling of weather phenomena allows us to forecast certain essential weather parameters without any possibility of changing them. By contrast, modeling of transition economies gives us the freedom to not only predict changes in important indexes of all types of economies, but also to influence them more effectively in the desired direction. Simply put: any economy, including a transitional one, can be controlled. This book is useful to anyone who wants to increase profits within their business, or improve the quality of their family life and the economic area they live in. It is beneficial for undergraduate and graduate students specializing in the fields of Economic Informatics, Economic Cybernetics, Applied Mathematics and Large Information Systems, as well as for professional economists, and employees of state planning and statistical organizations.
Optimization in Science and Engineering is dedicated in honor of the 60th birthday of Distinguished Professor Panos M. Pardalos. Pardalos's past and ongoing work has made a significant impact on several theoretical and applied areas in modern optimization. As tribute to the diversity of Dr. Pardalos's work in Optimization, this book comprises a collection of contributions from experts in various fields of this rich and diverse area of science. Topics highlight recent developments and include: Deterministic global optimization Variational inequalities and equilibrium problems Approximation and complexity in numerical optimization Non-smooth optimization Statistical models and data mining Applications of optimization in medicine, energy systems, and complex network analysis This volume will be of great interest to graduate students, researchers, and practitioners, in the fields of optimization and engineering.
Dynamic game theory serves the purpose of including strategic interaction in decision making and is therefore often applied to economic problems. This book presents the state-of-the-art and directions for future research in dynamic game theory related to economics. It was initiated by contributors to the 12th Viennese Workshop on Optimal Control, Dynamic Games and Nonlinear Dynamics and combines a selection of papers from the workshop with invited papers of high quality.
This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally be utilized for optimal design of other systems such as hydraulic and electrical networks. Â
This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, numerical dynamical systems, molecular dynamics and ocean/atmosphere dynamics, nonequilibrium statistical mechanics. The volume will serve as a valuable reference for mathematicians, physicists, engineers, biologists and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open or non-equilibrium behavior.
The aim of this book is to present qualitative aspects of logistics operations and supply chain management which help to implement the sustainable policy principles in the companies and public sector’s institutions. Authors in individual chapters address the issues related to reverse network configuration, forward and reverse supply chain integration, CO2 reduction in transportation, improvement of the production operations and management of the recovery activities. Some best practices from different countries and industries are presented. This book will be valuable to both academics and practitioners wishing to deepen their knowledge in the field of logistics operations and management with regard to sustainability issues.
This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever. He started analyzing learning algorithms in the 1960s and he invented the first version of the generalized portrait algorithm. He later developed one of the most successful methods in machine learning, the support vector machine (SVM) - more than just an algorithm, this was a new approach to learning problems, pioneering the use of functional analysis and convex optimization in machine learning. Part I of this book contains three chapters describing and witnessing some of Vladimir Vapnik's contributions to science. In the first chapter, Leon Bottou discusses the seminal paper published in 1968 by Vapnik and Chervonenkis that lay the foundations of statistical learning theory, and the second chapter is an English-language translation of that original paper. In the third chapter, Alexey Chervonenkis presents a first-hand account of the early history of SVMs and valuable insights into the first steps in the development of the SVM in the framework of the generalised portrait method. The remaining chapters, by leading scientists in domains such as statistics, theoretical computer science, and mathematics, address substantial topics in the theory and practice of statistical learning theory, including SVMs and other kernel-based methods, boosting, PAC-Bayesian theory, online and transductive learning, loss functions, learnable function classes, notions of complexity for function classes, multitask learning, and hypothesis selection. These contributions include historical and context notes, short surveys, and comments on future research directions. This book will be of interest to researchers, engineers, and graduate students engaged with all aspects of statistical learning.
This book provides an overview of state-of-the-art research on “Systems and Optimization Aspects of Smart Grid Challenges.†The authors have compiled and integrated different aspects of applied systems optimization research to smart grids, and also describe some of its critical challenges and requirements. The promise of a smarter electricity grid could significantly change how consumers use and pay for their electrical power, and could fundamentally reshape the current Industry. Gaining increasing interest and acceptance, Smart Grid technologies combine power generation and delivery systems with advanced communication systems to help save energy, reduce energy costs and improve reliability. Taken together, these technologies support new approaches for load balancing and power distribution, allowing optimal runtime power routing and cost management. Such unprecedented capabilities, however, also present a set of new problems and challenges at the technical and regulatory levels that must be addressed by Industry and the Research Community.
Metaheuristics exhibit desirable properties like simplicity, easy parallelizability and ready applicability to different types of optimization problems such as real parameter optimization, combinatorial optimization and mixed integer optimization. They are thus beginning to play a key role in different industrially important process engineering applications, among them the synthesis of heat and mass exchange equipment, synthesis of distillation columns and static and dynamic optimization of chemical and bioreactors. This book explains cutting-edge research techniques in related computational intelligence domains and their applications in real-world process engineering. It will be of interest to industrial practitioners and research academics.
Quantal Response Equilibrium presents a stochastic theory of games that unites probabilistic choice models developed in psychology and statistics with the Nash equilibrium approach of classical game theory. Nash equilibrium assumes precise and perfect decision making in games, but human behavior is inherently stochastic and people realize that the behavior of others is not perfectly predictable. In contrast, QRE models choice behavior as probabilistic and extends classical game theory into a more realistic and useful framework with broad applications for economics, political science, management, and other social sciences. Quantal Response Equilibrium spans the range from basic theoretical foundations to examples of how the principles yield useful predictions and insights in strategic settings, including voting, bargaining, auctions, public goods provision, and more. The approach provides a natural framework for estimating the effects of behavioral factors like altruism, reciprocity, risk aversion, judgment fallacies, and impatience. New theoretical results push the frontiers of models that include heterogeneity, learning, and well-specified behavioral modifications of rational choice and rational expectations. The empirical relevance of the theory is enhanced by discussion of data from controlled laboratory experiments, along with a detailed users' guide for estimation techniques. Quantal Response Equilibrium makes pioneering game-theoretic methods and interdisciplinary applications available to a wide audience.
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation and operators like crossover, mutation, etc, can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field of VLSI and embedded system design. The book introduces the multi-objective GA and PSO in a simple and easily understandable way that will appeal to introductory readers.
The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.
This book presents and applies a novel efficient meta-heuristic optimization algorithm called Colliding Bodies Optimization (CBO) for various optimization problems. The first part of the book introduces the concepts and methods involved, while the second is devoted to the applications. Though optimal design of structures is the main topic, two chapters on optimal analysis and applications in constructional management are also included. This algorithm is based on one-dimensional collisions between bodies, with each agent solution being considered as an object or body with mass. After a collision of two moving bodies with specified masses and velocities, these bodies again separate, with new velocities. This collision causes the agents to move toward better positions in the search space. The main algorithm (CBO) is internally parameter independent, setting it apart from previously developed meta-heuristics. This algorithm is enhanced (ECBO) for more efficient applications in the optimal design of structures. The algorithms are implemented in standard computer programming languages (MATLAB and C++) and two main codes are provided for ease of use.
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: * complexity and structure in model predictive control (MPC); * collaborative MPC; * distributed MPC; * optimization-based analysis and design; and * applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms-fault detection, for example-and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive. |
You may like...
Handbook of Experimental Game Theory
C. M. Capra, Rachel T. A. Croson, …
Hardcover
R7,224
Discovery Miles 72 240
Game Theory - Breakthroughs in Research…
Information Resources Management Association
Hardcover
R8,209
Discovery Miles 82 090
Application of Gaming in New Media…
Pratika Mishra, Swati Oberoi Dham
Hardcover
R5,330
Discovery Miles 53 300
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,132
Discovery Miles 21 320
|