![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization
The Gradient Test: Another Likelihood-Based Test presents the latest on the gradient test, a large-sample test that was introduced in statistics literature by George R. Terrell in 2002. The test has been studied by several authors, is simply computed, and can be an interesting alternative to the classical large-sample tests, namely, the likelihood ratio (LR), Wald (W), and Rao score (S) tests. Due to the large literature about the LR, W and S tests, the gradient test is not frequently used to test hypothesis. The book covers topics on the local power of the gradient test, the Bartlett-corrected gradient statistic, the gradient statistic under model misspecification, and the robust gradient-type bounded-influence test.
This book presents a wide range of optimization methods and their applications to various electrical power system problems such as economical load dispatch, demand supply management in microgrids, levelized energy pricing, load frequency control and congestion management, and reactive power management in radial distribution systems. Problems related to electrical power systems are often highly complex due to the massive dimensions, nonlinearity, non-convexity and discontinuity associated with objective functions. These systems also have a large number of equality and inequality constraints, which give rise to optimization problems that are difficult to solve using classical numerical methods. In this regard, nature inspired optimization algorithms offer an effective alternative, due to their ease of use, population-based parallel search mechanism, non-dependence on the nature of the problem, and ability to accommodate non-differentiable, non-convex problems. The analytical model of nature inspired techniques mimics the natural behaviors and intelligence of life forms. These techniques are mainly based on evolution, swarm intelligence, ecology, human intelligence and physical science.
This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.
In an expanding world with limited resources, optimization and uncertainty quantification have become a necessity when handling complex systems and processes. This book provides the foundational material necessary for those who wish to embark on advanced research at the limits of computability, collecting together lecture material from leading experts across the topics of optimization, uncertainty quantification and aerospace engineering. The aerospace sector in particular has stringent performance requirements on highly complex systems, for which solutions are expected to be optimal and reliable at the same time. The text covers a wide range of techniques and methods, from polynomial chaos expansions for uncertainty quantification to Bayesian and Imprecise Probability theories, and from Markov chains to surrogate models based on Gaussian processes. The book will serve as a valuable tool for practitioners, researchers and PhD students.
This book provides a literature review of techniques used to pass from continuous to combinatorial space, before discussing a detailed example with individual steps of how cuckoo search (CS) can be adapted to solve combinatorial optimization problems. It demonstrates the application of CS to three different problems and describes their source code. The content is divided into five chapters, the first of which provides a technical description, together with examples of combinatorial search spaces. The second chapter summarizes a diverse range of methods used to solve combinatorial optimization problems. In turn, the third chapter presents a description of CS, its formulation and characteristics. In the fourth chapter, the application of discrete cuckoo search (DCS) to solve three POCs (the traveling salesman problem, quadratic assignment problem and job shop scheduling problem) is explained, focusing mainly on a reinterpretation of the terminology used in CS and its source of inspiration. In closing, the fifth chapter discusses random-key cuckoo search (RKCS) using random keys to represent positions found by cuckoo search in the TSP and QAP solution space.
This book offers the first systematic analysis of economic thought concerning war. It retraces debates on war from the formation of European states, the rise of Mercantilism, to Colonialism, Imperialism, the World Wars and the Cold War. Allio shows different economic perspectives from which it is possible to study war as a tool to achieve economic ends: causes, consequences, costs, funding methods, and effects on the economic status of the state and on the well-being of citizens. Examining interpretations from Smith, Hobson, Keynes, Kalecki, Stiglitz and many more, this important volume addresses the economic implications of war from the perspectives of many who bore the costs of wars in reality.
There are three fundamental components in Control-Flow Integrity (CFI) enforcement. The first component is accurately recovering the policy (CFG). Usually, the more precise the policy is, the more security CFI improves, but precise CFG generation was considered hard without the support of source code. The second component is embedding the CFI policy securely. Current CFI enforcement usually inserts checks before indirect branches to consult a read-only table which stores the valid CFG information. However, this kind of read-only table can be overwritten by some kinds of attacks (e.g., the Rowhammer attack and data-oriented programming). The third component is to efficiently enforce the CFI policy. In current approaches CFI checks are always executed whenever there is an indirect control flow transfer. Therefore, it is critical to minimize the performance impact of CFI checks. In this book, we propose novel solutions to handle these three fundamental components. To generate a precise CFI policy without the support of the source code, we systematically study two methods which recover CFI policy based on function signature matching at the binary level and propose our novel rule- and heuristic-based mechanism to more accurately recover function signature. To embed CFI policy securely, we design a novel platform which encodes the policy into the machine instructions directly without relying on consulting any read-only data structure, by making use of the idea of instruction-set randomization. Each basic block is encrypted with a key derived from the CFG. To efficiently enforce CFI policy, we make use of a mature dynamic code optimization platform called DynamoRIO to enforce the policy so that we are only required to do the CFI check when needed.
This book addresses the frontier advances in the theory and application of nature-inspired optimization techniques, including solving the quadratic assignment problem, prediction in nature-inspired dynamic optimization, the lion algorithm and its applications, optimizing the operation scheduling of microgrids, PID controllers for two-legged robots, optimizing crane operating times, planning electrical energy distribution systems, automatic design and evaluation of classification pipelines, and optimizing wind-energy power generation plants. The book also presents a variety of nature-inspired methods and illustrates methods of adapting these to said applications. Nature-inspired computation, developed by mimicking natural phenomena, makes a significant contribution toward the solution of non-convex optimization problems that normal mathematical optimizers fail to solve. As such, a wide range of nature-inspired computing approaches has been used in multidisciplinary engineering applications. Written by researchers and developers from a variety of fields, this book presents the latest findings, novel techniques and pioneering applications.
This book introduces research presented at the "International Conference on Artificial Intelligence: Advances and Applications-2019 (ICAIAA 2019)," a two-day conference and workshop bringing together leading academicians, researchers as well as students to share their experiences and findings on all aspects of engineering applications of artificial intelligence. The book covers research in the areas of artificial intelligence, machine learning, and deep learning applications in health care, agriculture, business and security. It also includes research in core concepts of computer networks, intelligent system design and deployment, real-time systems, WSN, sensors and sensor nodes, SDN and NFV. As such it is a valuable resource for students, academics and practitioners in industry working on AI applications.
Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization.
This book develops a mathematical framework for modeling and
optimizing interference-coupled multiuser systems. At the core of
this framework is the concept of general interference functions,
which provides a simple means of characterizing interdependencies
between users. The entire analysis builds on the two core axioms
scale-invariance and monotonicity.
This book provides an introduction to the models, methods, and results of some due date-related scheduling problems in the field of multiagent scheduling. In multiagent scheduling, two or more agents share a common processing resource and each agent wants to optimize its own objective function with respect to its own set of jobs. Since the agents have conflicting objective functions, they have to negotiate among themselves with regard to sharing the common resource to optimize their own objective functions. A key feature of due date-related scheduling concerns the way in which due dates are considered: they can be given parameters or decision variables. For the former case, the motivation stems from the need to improve inventory and production management. For the latter case, due date assignment becomes a challenging issue since the decision-maker has to balance inventory holding costs against the benefits of fulfifilling orders in time. As for due dates, this book addresses the following three different scenarios: (i) The due dates of the jobs from either one or both of the two agents are decision variables, which are determined using some due date assignment models; (ii) The due dates of jobs in each job set are considered as given parameters, whereas which due date corresponds to a given job needs to determine; and (iii) The due date of each job is exogenously given. When the last case is involved, the objective function of each agent is related to the number of just-in-time jobs that are completed exactly on their due dates. For each considered scenario, depending on the model settings, and on the objective function of each agent, this book addresses the complexity, and the design of efficient exact or approximated algorithms. This book aims at introducing the author's research achievements in due date-related scheduling with two agents. It is written for researchers and Ph.D. students working in scheduling theory and other members of scientific community who are interested in recent scheduling models. Our goal is to enable the reader to know about some new achievements on this topic.
This book is devoted to the study of a class of optimal control problems arising in mathematical economics, related to the Robinson-Solow-Srinivasan (RSS) model. It will be useful for researches interested in the turnpike theory, infinite horizon optimal control and their applications, and mathematical economists. The RSS is a well-known model of economic dynamics that was introduced in the 1960s and as many other models of economic dynamics, the RSS model is determined by an objective function (a utility function) and a set-valued mapping (a technology map). The set-valued map generates a dynamical system whose trajectories are under consideration and the objective function determines an optimality criterion. The goal is to find optimal trajectories of the dynamical system, using the optimality criterion. Chapter 1 discusses turnpike properties for some classes of discrete time optimal control problems. Chapter 2 present the description of the RSS model and discuss its basic properties. Infinite horizon optimal control problems, related to the RSS model are studied in Chapter 3. Turnpike properties for the RSS model are analyzed in Chapter 4. Chapter 5 studies infinite horizon optimal control problems related to the RSS model with a nonconcave utility function. Chapter 6 focuses on infinite horizon optimal control problems with nonautonomous optimality criterions. Chapter 7 contains turnpike results for a class of discrete-time optimal control problems. Chapter 8 discusses the RSS model and compares different optimality criterions. Chapter 9 is devoted to the study of the turnpike properties for the RSS model. In Chapter 10 the one-dimensional autonomous RSS model is considered and the continuous time RSS model is studied in Chapter 11.
In this book, different quantitative approaches to the study of electoral systems have been developed: game-theoretic, decision-theoretic, statistical, probabilistic, combinatorial, geometric, and optimization ones. All the authors are prominent scholars from these disciplines. Quantitative approaches offer a powerful tool to detect inconsistencies or poor performance in actual systems. Applications to concrete settings such as EU, American Congress, regional, and committee voting are discussed.
This book presents the best papers from the 1st International Conference on Mathematical Research for Blockchain Economy (MARBLE) 2019, held in Santorini, Greece. While most blockchain conferences and forums are dedicated to business applications, product development or Initial Coin Offering (ICO) launches, this conference focused on the mathematics behind blockchain to bridge the gap between practice and theory. Every year, thousands of blockchain projects are launched and circulated in the market, and there is a tremendous wealth of blockchain applications, from finance to healthcare, education, media, logistics and more. However, due to theoretical and technical barriers, most of these applications are impractical for use in a real-world business context. The papers in this book reveal the challenges and limitations, such as scalability, latency, privacy and security, and showcase solutions and developments to overcome them.
This book explores applications of computational intelligence in key and emerging fields of engineering, especially with regard to condition monitoring and fault diagnosis, inverse problems, decision support systems and optimization. These applications can be beneficial in a broad range of contexts, including: water distribution networks, manufacturing systems, production and storage of electrical energy, heat transfer, acoustic levitation, uncertainty and robustness of infinite-dimensional objects, fatigue failure prediction, autonomous navigation, nanotechnology, and the analysis of technological development indexes. All applications, mathematical and computational tools, and original results are presented using rigorous mathematical procedures. Further, the book gathers contributions by respected experts from 22 different research centers and eight countries: Brazil, Cuba, France, Hungary, India, Japan, Romania and Spain. The book is intended for use in graduate courses on applied computation, applied mathematics, and engineering, where tools like computational intelligence and numerical methods are applied to the solution of real-world problems in emerging areas of engineering.
This book focuses on the design of efficient & dynamic methods to allocate divisible resources under various auction mechanisms, discussing their applications in power & microgrid systems and the V2G & EV charging coordination problems in smart grids. It describes the design of dynamic methods for single-sided and double-sided auction games and presents a number of simulation cases verifying the performances of the proposed algorithms in terms of efficiency, convergence and computational complexity. Further, it explores the performances of certain auction mechanisms in a hierarchical structure and with large-scale agents, as well as the auction mechanisms for the efficient allocation of multi-type resources. Lastly, it generalizes the main and demonstrates their application in smart grids. This book is a valuable resource for researchers, engineers, and graduate students in the fields of optimization, game theory, auction mechanisms and smart grids interested in designing dynamic auction mechanisms to implement optimal allocation of divisible resources, especially electricity and other types of energy in smart grids.
Evolutionary algorithms are very powerful techniques used to find solutions to real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run.
'Deb's book is complete, eminently readable, and the coverage is scholarly and thorough. It is my pleasure and duty to urge you to buy this book, read it, use it and enjoy it' - David E. Goldberg, University of Illinois at Urbana-Champaign, USA
This edited book focuses on non-classical logics and their applications, highlighting the rapid advances and the new perspectives that are emerging in this area. Non-classical logics are logical formalisms that violate or go beyond classical logic laws, and their specific features make them particularly suited to describing and reason about aspects of social interaction. The richness and diversity of non-classical logics mean that this area is a natural catalyst for ideas and insights from many different fields, from information theory to game theory and business science. This volume is the post-proceedings of the 8th International Conference on Logic and Cognition, held at Sun Yat-Sen University Institute of Logic and Cognition (ILC) in Guangzhou, China in December 2016. The conference series started in 2001, and is organized by the ILC, often in collaboration with various international research groups. This eighth installment was jointly organized by ILC and Alessandra Palmigiano's Applied Logic research group. The conference series aims to foster the development of effective logical tools to study social behavior from a philosophical, cognitive and formal perspective in order to challenge the field of logic in ways that open up new and exciting research directions. Chapter "The Category of Node-and-Choice Forms, with Subcategories for Choice-Sequence Forms and Choice-Set Forms" of this book is available open access under a CC BY 4.0 license at link.springer.com
This is the first book to provide a comprehensive and systematic introduction to the ranking methods for interval-valued intuitionistic fuzzy sets, multi-criteria decision-making methods with interval-valued intuitionistic fuzzy sets, and group decision-making methods with interval-valued intuitionistic fuzzy preference relations. Including numerous application examples and illustrations with tables and figures and presenting the authors' latest research developments, it is a valuable resource for researchers and professionals in the fields of fuzzy mathematics, operations research, information science, management science and decision analysis.
This book presents the latest researches on hypersonic steady glide dynamics and guidance, including the concept of steady glide reentry trajectory and the stability of its regular perturbation solutions, trajectory damping control technique for hypersonic glide reentry, singular perturbation guidance of hypersonic glide reentry, trajectory optimization based on steady glide, linear pseudospectral generalized nominal effort miss distance guidance, analytical entry guidance and trajectory-shaping guidance with final speed and load factor constraints. They can be used to solve many new difficult problems in entry guidance. And many practical engineering cases are provided for the readers for better understanding. Researchers and students in the fields of flight vehicle design or flight dynamics, guidance and control could use the book as valuable reference.
The purpose of this book is to present unpublished papers at the cutting edge of research on dialetheism and to reflect recent work on the applications of the theory. It includes contributions from some of the most respected scholars in the field, as well as from young, up-and-coming philosophers working on dialetheism. Moving from the fringes of philosophy to become a main player in debates concerning truth and the logical paradoxes, dialetheism has thrived since the publication of Graham Priest's In Contradiction, and several of the papers find their roots in a conference on dialetheism held in Glasgow to mark the 25th anniversary of Priest's book. The content presented here demonstrates the considerable body of work produced in this field in recent years. With a broad focus, this book also addresses the applications of dialetheism outside the more familiar area of the logical paradoxes, and includes pieces discussing the application of dialetheism in metaphysics, philosophy of language, and philosophy of mind.
This book provides a timely and comprehensive overview of current theories and methods in fuzzy logic, as well as relevant applications in a variety of fields of science and technology. Dedicated to Lotfi A. Zadeh on his one year death anniversary, the book goes beyond a pure commemorative text. Yet, it offers a fresh perspective on a number of relevant topics, such as computing with words, theory of perceptions, possibility theory, and decision-making in a fuzzy environment. Written by Zadeh's closest colleagues and friends, the different chapters are intended both as a timely reference guide and a source of inspiration for scientists, developers and researchers who have been dealing with fuzzy sets or would like to learn more about their potential for their future research.
This book is intended to be a useful contribution for the modern teaching of applied mathematics, educating Industrial Mathematicians that will meet the growing demand for such experts. It covers many applications where mathematics play a fundamental role, from biology, telecommunications, medicine, physics, finance and industry. It is presented in such a way that can be useful in Modelation, Simulation and Optimization courses, targeting master and PhD students. Its content is based on many editions from the successful series of Modelling Weeks organized by the European Consortium of Mathematics in Industry (ECMI). Each chapter addresses a particular problem, and is written in a didactic way, providing the description of the problem, the particular way of approaching it and the proposed solution, along with the results obtained.
Choose the Correct Solution Method for Your Optimization Problem Optimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible directions, genetic algorithms, particle swarm optimization (PSO), simulated annealing, ant colony optimization, and tabu search methods. The author shows how to solve non-convex multi-objective optimization problems using simple modifications of the basic PSO code. The book also introduces multidisciplinary design optimization (MDO) architectures-one of the first optimization books to do so-and develops software codes for the simplex method and affine-scaling interior point method for solving linear programming problems. In addition, it examines Gomory's cutting plane method, the branch-and-bound method, and Balas' algorithm for integer programming problems. The author follows a step-by-step approach to developing the MATLAB (R) codes from the algorithms. He then applies the codes to solve both standard functions taken from the literature and real-world applications, including a complex trajectory design problem of a robot, a portfolio optimization problem, and a multi-objective shape optimization problem of a reentry body. This hands-on approach improves your understanding and confidence in handling different solution methods. The MATLAB codes are available on the book's CRC Press web page. |
![]() ![]() You may like...
The History and Allure of Interactive…
Mark Kretzschmar, Sara Raffel
Hardcover
R3,197
Discovery Miles 31 970
Evaluating Voting Systems with…
Mostapha Diss, Vincent Merlin
Hardcover
R4,604
Discovery Miles 46 040
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,308
Discovery Miles 23 080
Game Theory - Applications in Logistics…
Danijela Tuljak-Suban
Hardcover
R3,315
Discovery Miles 33 150
|