![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization
Real-life decisions are usually made in the state of uncertainty such as randomness and fuzziness. How do we model optimization problems in uncertain environments? How do we solve these models? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertain programming theory, including numerous modeling ideas, hybrid intelligent algorithms, and applications in system reliability design, project scheduling problem, vehicle routing problem, facility location problem, and machine scheduling problem. Researchers, practitioners and students in operations research, management science, information science, system science, and engineering will find this work a stimulating and useful reference.
The exercise of solving engineering problems that require optimisation procedures can be seriously affected by uncertain variables, resulting in potential underperforming solutions. Although this is a well-known problem, important knowledge gaps are still to be addressed. For example, concepts of robustness largely differ from study to study, robust solutions are generally provided with limited information about their uncertainty, and robust optimisation is difficult to apply as it is a computationally demanding task. The proposed research aims to address the mentioned challenges and focuses on robust optimisation of multiple objectives and multiple sources of probabilistically described uncertainty. This is done by the development of the Robust Optimisation and Probabilistic Analysis of Robustness algorithm (ROPAR), which integrates widely accepted robustness metrics into a single flexible framework. In this thesis, ROPAR is not only tested in benchmark functions, but also in engineering problems related to the water sector, in particular the design of urban drainage and water distribution systems. ROPAR allows for employing practically any existing multi-objective optimisation algorithm as its internal optimisation engine, which enables its applicability to other problems as well. Additionally, ROPAR can be straightforwardly parallelized, allowing for fast availability of results.
Discusses replacement, repair, and inspection Offers estimation and statistical tests Covers accelerated life testing Explores warranty analysis manufacturing Includes service reliability
This textbook provides students, researchers, and engineers in the area of electrical engineering with advanced mathematical optimization methods. Presented in a readable format, this book highlights fundamental concepts of advanced optimization used in electrical engineering. Chapters provide a collection that ranges from simple yet important concepts such as unconstrained optimization to highly advanced topics such as linear matrix inequalities and artificial intelligence-based optimization methodologies. The reader is motivated to engage with the content via numerous application examples of optimization in the area of electrical engineering. The book begins with an extended review of linear algebra that is a prerequisite to mathematical optimization. It then precedes with unconstrained optimization, convex programming, duality, linear matrix inequality, and intelligent optimization methods. This book can be used as the main text in courses such as Engineering Optimization, Convex Engineering Optimization, Advanced Engineering Mathematics and Robust Optimization and will be useful for practicing design engineers in electrical engineering fields. Author provided cases studies and worked examples are included for student and instructor use.
Volume IV of the series "Mathematics and Physics Applied to Science and Technology," this comprehensive six-book set covers: Linear Differential Equations and Oscillators Non-linear Differential Equations and Dynamical Systems Higher-order Differential Equations and Elasticity Simultaneous Systems of Differential Equations and Multi-dimensional Oscillators Singular Differential Equations and Special Functions Classification and Examples of Differential Equations and their Applications
This book will cover heuristic optimization techniques and applications in engineering problems. The book will be divided into three sections that will provide coverage of the techniques, which can be employed by engineers, researchers, and manufacturing industries, to improve their productivity with the sole motive of socio-economic development. This will be the first book in the category of heuristic techniques with relevance to engineering problems and achieving optimal solutions. Features Explains the concept of optimization and the relevance of using heuristic techniques for optimal solutions in engineering problems Illustrates the various heuristics techniques Describes evolutionary heuristic techniques like genetic algorithm and particle swarm optimization Contains natural based techniques like ant colony optimization, bee algorithm, firefly optimization, and cuckoo search Offers sample problems and their optimization, using various heuristic techniques
This book develops the central aspect of fixed point theory - the topological fixed point index - to maximal generality, emphasizing correspondences and other aspects of the theory that are of special interest to economics. Numerous topological consequences are presented, along with important implications for dynamical systems. The book assumes the reader has no mathematical knowledge beyond that which is familiar to all theoretical economists. In addition to making the material available to a broad audience, avoiding algebraic topology results in more geometric and intuitive proofs. Graduate students and researchers in economics, and related fields in mathematics and computer science, will benefit from this book, both as a useful reference and as a well-written rigorous exposition of foundational mathematics. Numerous problems sketch key results from a wide variety of topics in theoretical economics, making the book an outstanding text for advanced graduate courses in economics and related disciplines.
This volume contains papers presented at the 11th scientific meeting of the IFIP working group on reliability and optimization of structural systems. The purpose of Working Group 7.5 is to promote modern structural system reliability and optimization theory and its applications; stimulate research, development, and application; assist and advance research and development; further the dissemination and exchange of information; and encourage education. The main themes include structural reliability methods and applications, engineering risk analysis and decision-making, new optimization techniques and various applications in civil engineering.
In the quarter of a century since three mathematicians and game theorists collaborated to create Winning Ways for Your Mathematical Plays, the book has become the definitive work on the subject of mathematical games. Now carefully revised and broken down into four volumes to accommodate new developments, the Second Edition retains the original's wealth of wit and wisdom. The authors' insightful strategies, blended with their witty and irreverent style, make reading a profitable pleasure. In Volume 4, the authors present a Diamond of a find, covering one-player games such as Solitaire.
Singular Differential Equations and Special Functions is the fifth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fifth book consists of one chapter (chapter 9 of the set). The chapter starts with general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations with variable coefficients, that can be analytic functions or have regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions. Includes existence, unicity, robustness, uniformity, and other theorems for non-linear differential equations Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as Liapunov functions Includes linear differential equations with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance Details theory of the generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and solutions via power series, parametric integral transforms, and continued fractions
In the quarter of a century since three mathematicians and game theorists collaborated to create Winning Ways for Your Mathematical Plays, the book has become the definitive work on the subject of mathematical games. Now carefully revised and broken down into four volumes to accommodate new developments, the Second Edition retains the original's wealth of wit and wisdom. The authors' insightful strategies, blended with their witty and irreverent style, make reading a profitable pleasure. In Volume 3, the authors examine Games played in Clubs, giving case studies for coin and paper-and-pencil games, such as Dots-and-Boxes and Nimstring. From the Table of Contents: - Turn and Turn About - Chips and Strips - Dots-and-Boxes - Spots and Sprouts - The Emperor and His Money - The King and the Consumer - Fox and Geese; Hare and Hounds - Lines and Squares
Recognized as a "Recommended" title by Choice for their April 2021 issue. Choice is a publishing unit at the Association of College & Research Libraries (ACR&L), a division of the American Library Association. Choice has been the acknowledged leader in the provision of objective, high-quality evaluations of nonfiction academic writing. Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
The seminal 1989 work of Douglas and Paulsen on the theory of Hilbert modules over function algebras precipitated a number of major research efforts. This in turn led to some intriguing and valuable results, particularly in the areas of operator theory and functional analysis. With the field now beginning to blossom, the time has come to collect those results in one volume.
This book is a collection of certain lectures given at the Economics Department at Stanford University on the game theory. It contains material on this theory of rational behavior of people with nonidentical interests whose area of application includes economics, politics, and war.
This textbook provides a one-semester introduction to mathematical economics for first year graduate and senior undergraduate students. Intended to fill the gap between typical liberal arts curriculum and the rigorous mathematical modeling of graduate study in economics, this text provides a concise introduction to the mathematics needed for core microeconomics, macroeconomics, and econometrics courses. Chapters 1 through 5 builds students' skills in formal proof, axiomatic treatment of linear algebra, and elementary vector differentiation. Chapters 6 and 7 present the basic tools needed for microeconomic analysis. Chapter 8 provides a quick introduction to (or review of) probability theory. Chapter 9 introduces dynamic modeling, applicable in advanced macroeconomics courses. The materials assume prerequisites in undergraduate calculus and linear algebra. Each chapter includes in-text exercises and a solutions manual, making this text ideal for self-study.
Game theory involves multi-person decision making and differential dynamic game theory has been widely applied to n-person decision making problems, which are stimulated by a vast number of applications. This book addresses the gap to discuss general stochastic n-person noncooperative and cooperative game theory with wide applications to control systems, signal processing systems, communication systems, managements, financial systems, and biological systems. H game strategy, n-person cooperative and noncooperative game strategy are discussed for linear and nonlinear stochastic systems along with some computational algorithms developed to efficiently solve these game strategies.
This book deals with nonsmooth structures arising within the optimization setting. It considers four optimization problems, namely, mathematical programs with complementarity constraints, general semi-infinite programming problems, mathematical programs with vanishing constraints and bilevel optimization. The author uses the topological approach and topological invariants of corresponding feasible sets are investigated. Moreover, the critical point theory in the sense of Morse is presented and parametric and stability issues are considered. The material progresses systematically and establishes a comprehensive theory for a rather broad class of optimization problems tailored to their particular type of nonsmoothness. Topological Aspects of Nonsmooth Optimization will benefit researchers and graduate students in applied mathematics, especially those working in optimization theory, nonsmooth analysis, algebraic topology and singularity theory.
Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance.
This is the third volume of the "Handbook of Game Theory with Economic Applications." Since the publication of multi-Volume 1 a decade ago, game theory has continued to develop at a furious pace, and today it is the dominant tool in economic theory. The three volumes together cover the fundamental theoretical aspects, a wide range of applications to economics, several chapters on applications to political science and individual chapters on applications to disciplines as diverse as evolutionary biology, computer science, law, psychology and ethics. The authors are the most eminent practitioners in the field, including three Nobel Prize winners. The topics covered in the present volume include strategic ("Nash") equilibrium; incomplete information; two-person non-zero-sum games; noncooperative games with a continuum of players; stochastic games; industrial organization; bargaining, inspection; economic history; the Shapley value and its applications to perfectly competitive economies, to taxation, to public goods and to fixed prices; political science; law mechanism design; and game experimentation.
The genre of adventure games is frequently overlooked. Lacking the constantly-evolving graphics and graphic violence of their counterparts in first-person and third-person shooters or role-playing games, they are often marketed to and beloved by players outside of mainstream game communities. While often forgotten by both the industry and academia, adventure games have had (and continue to have) a surprisingly wide influence on contemporary games, in categories including walking simulators, hidden object games, visual novels, and bestselling titles from companies like Telltale and Campo Santo. In this examination of heirs to the genre's legacy, the authors examine the genre from multiple perspectives, connecting technical analysis with critical commentary and social context. This will be the first book to consider this important genre from a comprehensive and transdisciplinary perspective. Drawing upon methods from platform studies, software studies, media studies, and literary studies, they reveal the genre's ludic and narrative origins and patterns, where character (and the player's embodiment of a character) is essential to the experience of play and the choices within a game. A deep structural analysis of adventure games also uncovers an unsteady balance between sometimes contradictory elements of story, exploration, and puzzles: with different games and creators employing a multitude of different solutions to resolving this tension.
This volume features recent development and techniques in evolution equations by renown experts in the field. Each contribution emphasizes the relevance and depth of this important area of mathematics and its expanding reach into the physical, biological, social, and computational sciences as well as into engineering and technology. The reader will find an accessible summary of a wide range of active research topics, along with exciting new results. Topics include: Impulsive implicit Caputo fractional q-difference equations in finite and infinite dimensional Banach spaces; optimal control of averaged state of a population dynamic model; structural stability of nonlinear elliptic p(u)-Laplacian problem with Robin-type boundary condition; exponential dichotomy and partial neutral functional differential equations, stable and center-stable manifolds of admissible class; global attractor in Alpha-norm for some partial functional differential equations of neutral and retarded type; and more. Researchers in mathematical sciences, biosciences, computational sciences and related fields, will benefit from the rich and useful resources provided. Upper undergraduate and graduate students may be inspired to contribute to this active and stimulating field.
A pioneering look at the fundamental role of logic in optimization and constraint satisfaction While recent efforts to combine optimization and constraint satisfaction have received considerable attention, little has been said about using logic in optimization as the key to unifying the two fields. Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible modeling and solution techniques. Designed to be easily accessible to industry professionals and academics in both operations research and artificial intelligence, the book provides a wealth of examples as well as elegant techniques and modeling frameworks ready for implementation. Timely, original, and thought-provoking, Logic-Based Methods for Optimization:
|
![]() ![]() You may like...
Advances in Rice Research for Abiotic…
Mirza Hasanuzzaman, Masayuki Fujita, …
Paperback
R6,902
Discovery Miles 69 020
Membrane Biomechanics, Volume 86
Irena Levitan, Andreea Trache
Hardcover
Data-Driven Methods for Adaptive Spoken…
Oliver Lemon, Olivier Pietquin
Hardcover
R2,873
Discovery Miles 28 730
Interfacing Humans and Robots for Gait…
Carlos A. Cifuentes, Marcela Munera
Hardcover
R3,429
Discovery Miles 34 290
Advances in Italian Mechanism Science…
Giovanni Boschetti, Alessandro Gasparetto
Hardcover
Soft Robotics: Trends, Applications and…
Cecilia Laschi, Jonathan Rossiter, …
Hardcover
R6,292
Discovery Miles 62 920
Advances in Systems, Control and…
Akash Kumar Bhoi, Pradeep Kumar Mallick, …
Hardcover
R9,669
Discovery Miles 96 690
Microbial Endophytes - Prospects for…
Ajay Kumar, Vipin Kumar Singh
Paperback
R4,708
Discovery Miles 47 080
A Bridge to Recovery - An Introduction…
Robert L. DuPont, John P. McGovern
Hardcover
R1,430
Discovery Miles 14 300
|