![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
The connected dominating set has been a classic subject studied in graph theory since 1975. Since the 1990s, it has been found to have important applications in communication networks, especially in wireless networks, as a virtual backbone. Motivated from those applications, many papers have been published in the literature during last 15 years. Now, the connected dominating set has become a hot research topic in computer science. In this book, we are going to collect recent developments on the connected dominating set, which presents the state of the art in the study of connected dominating sets. The book consists of 16 chapters. Except the 1st one, each chapter is devoted to one problem, and consists of three parts, motivation and overview, problem complexity analysis, and approximation algorithm designs, which will lead the reader to see clearly about the background, formulation, existing important research results, and open problems. Therefore, this would be a very valuable reference book for researchers in computer science and operations research, especially in areas of theoretical computer science, computer communication networks, combinatorial optimization, and discrete mathematics.
This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.
This book develops the concepts of various unique optimization techniques in the crisp and fuzzy environment. It provides an extensive overview of geometric programming methods within a unifying framework, and presents an in-depth discussion of the modified geometric programming problem, fuzzy geometric programming, as well as new insights into goal geometric programming. With numerous examples and exercises together with detailed solutions for several problems, the book also addresses fuzzy multi-objective geometric programming techniques. Geometric programming, which falls into the general class of signomial problems, has applications across disciplines, from engineering to economics, and is extremely useful in applications of a variety of optimization problems. Organized into thirteen chapters, this book is a valuable resource for graduate and advanced undergraduate students and researchers in applied mathematics and engineering.
This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.
In this path-breaking theoretical work, political scientist Steven
Brams and mathematician Mark Kilgour show how game theory can be
applied to the rigorous development and thoughtful analysis of
several critical problems that afflict the security of nations,
from the deterrence of foes who might launch attacks, to the
stabilization of crises that could explode into wars. In addition,
they analyze a variety of related questions, including the
interlocking preferences that fuel arms races, the strategic impact
that Star Wars may have on nuclear deterrence, and optimal
strategies for verifying arms control treaties.
This book offers a rigorous mathematical analysis of fuzzy geometrical ideas. It demonstrates the use of fuzzy points for interpreting an imprecise location and for representing an imprecise line by a fuzzy line. Further, it shows that a fuzzy circle can be used to represent a circle when its description is not known precisely, and that fuzzy conic sections can be used to describe imprecise conic sections. Moreover, it discusses fundamental notions on fuzzy geometry, including the concepts of fuzzy line segment and fuzzy distance, as well as key fuzzy operations, and includes several diagrams and numerical illustrations to make the topic more understandable. The book fills an important gap in the literature, providing the first comprehensive reference guide on the fuzzy mathematics of imprecise image subsets and imprecise geometrical objects. Mainly intended for researchers active in fuzzy optimization, it also includes chapters relevant for those working on fuzzy image processing and pattern recognition. Furthermore, it is a valuable resource for beginners interested in basic operations on fuzzy numbers, and can be used in university courses on fuzzy geometry, dealing with imprecise locations, imprecise lines, imprecise circles, and imprecise conic sections.
Herbert Scarf is a highly esteemed distinguished American economist. He is internationally famous for his early epoch-making work on optimal inventory policies and his highly influential study with Andrew Clark on optimal policies for a multi-echelon inventory problem, which initiated the important and flourishing field of supply chain management. Equally, he has gained world recognition for his classic study on the stability of the Walrasian price adjustment processes and his fundamental analysis on the relationship between the core and the set of competitive equilibria (the so-called Edgeworth conjecture). Further achievements include his remarkable sufficient condition for the existence of a core in non-transferable utility games and general exchange economies, his seminal paper with Lloyd Shapley on housing markets, and his pioneering study on increasing returns and models of production in the presence of indivisibilities. All in all, however, the name of Scarf is always remembered as a synonym for the computation of economic equilibria and fixed points. In the early 1960s he invented a path-breaking technique for computing equilibrium prices.This work has generated a major research field in economics termed Applied General Equilibrium Analysis and a corresponding area in operations research known as Simplicial Fixed Point Methods. This book comprises all his research articles and consists of four volumes. This volume collects Herbert Scarf's papers in the area of Operations Research and Management.
Mathematical Optimization Terminology: A Comprehensive Glossary of Terms is a practical book with the essential formulations, illustrative examples, real-world applications and main references on the topic. This book helps readers gain a more practical understanding of optimization, enabling them to apply it to their algorithms. This book also addresses the need for a practical publication that introduces these concepts and techniques.
Introduction to Nature-Inspired Optimization brings together many of the innovative mathematical methods for non-linear optimization that have their origins in the way various species behave in order to optimize their chances of survival. The book describes each method, examines their strengths and weaknesses, and where appropriate, provides the MATLAB code to give practical insight into the detailed structure of these methods and how they work. Nature-inspired algorithms emulate processes that are found in the natural world, spurring interest for optimization. Lindfield/Penny provide concise coverage to all the major algorithms, including genetic algorithms, artificial bee colony algorithms, ant colony optimization and the cuckoo search algorithm, among others. This book provides a quick reference to practicing engineers, researchers and graduate students who work in the field of optimization.
This book covers crucial lacunae of the linear discrete-time time-invariant dynamical systems and introduces the reader to their treatment, while functioning under real, natural conditions, in forced regimes with arbitrary initial conditions. It provides novel theoretical tools necessary for the analysis and design of the systems operating in stated conditions. The text completely covers two well-known systems, IO and ISO, along with a new system, IIO. It discovers the concept of the full transfer function matrix F(z) in the z-complex domain, which incorporates the Z-transform of the system, input and another variable, vectors, all with arbitrary initial conditions. Consequently, it addresses the full system matrix P(z) and the full block diagram technique based on the use of F(z), which incorporates the Z-transform of the system, input and another variable, vectors, all with arbitrary initial conditions. The book explores the direct relationship between the system full transfer function matrix F(z) and the Lyapunov stability concept, definitions, and conditions, as well as with the BI stability concept, definitions, and conditions. The goal of the book is to unify the study and applications of all three classes of the linear discrete-time time-invariant system, for short systems.
The Science of Deep Learning emerged from courses taught by the author that have provided thousands of students with training and experience for their academic studies, and prepared them for careers in deep learning, machine learning, and artificial intelligence in top companies in industry and academia. The book begins by covering the foundations of deep learning, followed by key deep learning architectures. Subsequent parts on generative models and reinforcement learning may be used as part of a deep learning course or as part of a course on each topic. The book includes state-of-the-art topics such as Transformers, graph neural networks, variational autoencoders, and deep reinforcement learning, with a broad range of applications. The appendices provide equations for computing gradients in backpropagation and optimization, and best practices in scientific writing and reviewing. The text presents an up-to-date guide to the field built upon clear visualizations using a unified notation and equations, lowering the barrier to entry for the reader. The accompanying website provides complementary code and hundreds of exercises with solutions.
Although valued for its ability to allow teams to collaborate and foster coalitional behaviors among the participants, game theory's application to networking systems is not without challenges. Distributed Strategic Learning for Wireless Engineers illuminates the promise of learning in dynamic games as a tool for analyzing network evolution and underlines the potential pitfalls and difficulties likely to be encountered. Establishing the link between several theories, this book demonstrates what is needed to learn strategic interaction in wireless networks under uncertainty, randomness, and time delays. It addresses questions such as: How much information is enough for effective distributed decision making? Is having more information always useful in terms of system performance? What are the individual learning performance bounds under outdated and imperfect measurement? What are the possible dynamics and outcomes if the players adopt different learning patterns? If convergence occurs, what is the convergence time of heterogeneous learning? What are the issues of hybrid learning? How can one develop fast and efficient learning schemes in scenarios where some players have more information than the others? What is the impact of risk-sensitivity in strategic learning systems? How can one construct learning schemes in a dynamic environment in which one of the players do not observe a numerical value of its own-payoffs but only a signal of it? How can one learn "unstable" equilibria and global optima in a fully distributed manner? The book provides an explicit description of how players attempt to learn over time about the game and about the behavior of others. It focuses on finite and infinite systems, where the interplay among the individual adjustments undertaken by the different players generates different learning dynamics, heterogeneous learning, risk-sensitive learning, and hybrid dynamics.
Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students' skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes students in applied mathematics, computational biology, computer science, economics, and physics who want to see rigorous mathematics combined with real applications. In this second edition the emphasis remains on finite-dimensional optimization. New material has been added on the MM algorithm, block descent and ascent, and the calculus of variations. Convex calculus is now treated in much greater depth. Advanced topics such as the Fenchel conjugate, subdifferentials, duality, feasibility, alternating projections, projected gradient methods, exact penalty methods, and Bregman iteration will equip students with the essentials for understanding modern data mining techniques in high dimensions.
The interaction between mathematicians, statisticians and econometricians working in actuarial sciences and finance is producing numerous meaningful scientific results. This volume introduces new ideas, in the form of four-page papers, presented at the international conference Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF), held at Universidad Carlos III de Madrid (Spain), 4th-6th April 2018. The book covers a wide variety of subjects in actuarial science and financial fields, all discussed in the context of the cooperation between the three quantitative approaches. The topics include: actuarial models; analysis of high frequency financial data; behavioural finance; carbon and green finance; credit risk methods and models; dynamic optimization in finance; financial econometrics; forecasting of dynamical actuarial and financial phenomena; fund performance evaluation; insurance portfolio risk analysis; interest rate models; longevity risk; machine learning and soft-computing in finance; management in insurance business; models and methods for financial time series analysis, models for financial derivatives; multivariate techniques for financial markets analysis; optimization in insurance; pricing; probability in actuarial sciences, insurance and finance; real world finance; risk management; solvency analysis; sovereign risk; static and dynamic portfolio selection and management; trading systems. This book is a valuable resource for academics, PhD students, practitioners, professionals and researchers, and is also of interest to other readers with quantitative background knowledge.
In the quarter of a century since three mathematicians and game theorists collaborated to create Winning Ways for Your Mathematical Plays, the book has become the definitive work on the subject of mathematical games. Now carefully revised and broken down into four volumes to accommodate new developments, the Second Edition retains the original's wealth of wit and wisdom. The authors' insightful strategies, blended with their witty and irreverent style, make reading a profitable pleasure. In Volume 4, the authors present a Diamond of a find, covering one-player games such as Solitaire.
Herbert Scarf is a highly esteemed distinguished American economist. He is internationally famous for his early epoch-making work on optimal inventory policies and his highly influential study with Andrew Clark on optimal policies for a multi-echelon inventory problem, which initiated the important and flourishing field of supply chain management. Equally, he has gained world recognition for his classic study on the stability of the Walrasian price adjustment processes and his fundamental analysis on the relationship between the core and the set of competitive equilibria (the so-called Edgeworth conjecture). Further achievements include his remarkable sufficient condition for the existence of a core in non-transferable utility games and general exchange economies, his seminal paper with Lloyd Shapley on housing markets, and his pioneering study on increasing returns and models of production in the presence of indivisibilities. All in all, however, the name of Scarf is always remembered as a synonym for the computation of economic equilibria and fixed points. In the early 1960s he invented a path-breaking technique for computing equilibrium prices. This work has generated a major research field in economics termed Applied General Equilibrium Analysis and a corresponding area in operations research known as Simplicial Fixed Point Methods. This book comprises all his research articles and consists of four volumes. This volume collects Herbert Scarf's papers in the area of Economics and Game Theory.
Calculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization problems. Whereas most books on this subject focus on a particular theory, this text takes a general approach including all main theories. In order to be self-contained, the book includes three chapters of preliminary material, each of which can be used as an independent course if needed. The first chapter deals with metric properties, variational principles, decrease principles, methods of error bounds, calmness and metric regularity. The second one presents the classical tools of differential calculus and includes a section about the calculus of variations. The third contains a clear exposition of convex analysis.
In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.Explanations focus on critical points and tangencies of polynomial optimization, Hoelderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.
This book presents an introduction to variational analysis, a field which unifies theories and techniques developed in calculus of variations, optimization, and control, and covers convex analysis, nonsmooth analysis, and set-valued analysis. It focuses on problems with constraints, the analysis of which involves set-valued mappings and functions that are not differentiable. Applications of variational analysis are interdisciplinary, ranging from financial planning to steering a flying object. The book is addressed to graduate students, researchers, and practitioners in mathematical sciences, engineering, economics, and finance. A typical reader of the book should be familiar with multivariable calculus and linear algebra. Some basic knowledge in optimization, control, and elementary functional analysis is desirable, but all necessary background material is included in the book.
In many decision problems, e.g. from the area of production and logistics manage ment, the evaluation of alternatives and the determination of an optimal or at least suboptimal solution is an important but dif?cult task. For most such problems no ef?cient algorithm is known and classical approaches of Operations Research like Mixed Integer Linear Programming or Dynamic Pro gramming are often of limited use due to excessive computation time. Therefore, dedicated heuristic solution approaches have been developed which aim at providing good solutions in reasonable time for a given problem. However, such methods have two major drawbacks: First, they are tailored to a speci?c prob lem and their adaption to other problems is dif?cult and in many cases even impos sible. Second, they are typically designed to "build" one single solution in the most effective way, whereas most decision problems have a vast number of feasible solu tions. Hence usually the chances are high that there exist better ones. To overcome these limitations, problem independent search strategies, in particular metaheuris tics, have been proposed. This book provides an elementary step by step introduction to metaheuristics focusing on the search concepts they are based on. The ?rst part demonstrates un derlying concepts of search strategies using a simple example optimization problem.
The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.
The first volume, Geometry, Language and Strategy, extended the concepts of Game Theory, replacing static equilibrium with a deterministic dynamic theory. The first volume opened up many applications that were only briefly touched on. To study the consequences of the deterministic approach in contrast to standard Bayesian approaches, the richness of applications, requires an engineering foundation and discipline, which this volume supplies. It provides a richer list of applications, such as the Prisoner's Dilemma, which extends the resonant behavior of Vol. 1 to more general time-dependent and transient behaviors.
This book describes the interplay of mechanics, electronics, electrotechnics, automation and biomechanics. It provides a broad overview of mechatronics systems ranging from modeling and dimensional analysis, and an overview of magnetic, electromagnetic and piezo-electric phenomena. It also includes the investigation of the pneumo-fluid-mechanical, as well as electrohydraulic servo systems, modeling of dynamics of an atom/particle embedded in the magnetic field, integrity aspects of the Maxwell's equations, the selected optimization problems of angular velocity control of a DC motor subjected to chaotic disturbances with and without stick-slip dynamics, and the analysis of a human chest adjacent to the elastic backrest aimed at controlling force to minimize relative compression of the chest employing the LQR.This book provides a theoretical background on the analysis of various kinds of mechatronics systems, along with their computational analysis, control, optimization as well as laboratory investigations.
Gaming the Market: Applying Game Theory to Create Winning Trading Strategies is the first book to show investors how game theory is applicable to decisions about buying and selling stocks, bonds, mutual funds, futures, and options. As a practical trading guide, Gaming the Market will help investors master this revolutionary approach, and employ it to their advantage. Although game theory has been studied since the 1940s, it has only recently been applied to the world of finance. Game theory champions garnered the 1994 Nobel Prize in Economics, and, today, this theory is used to analyze everything from the baseball strike to FCC auctions. Increasingly, game theory is making its mark as a potent tool for traders. In Gaming the Market, economist Ronald B. Shelton provides a model that enables traders to predict profitability and, as a result, make effective buy and sell decisions. Stated simply, game theory is the study of conflict based on a formal approach to decision making that views decisions as choices made in a game. Whether playing individually or in a group, each player in a conflict has more than one course of action available to him, and the outcome of the "game" depends on the interaction of the strategies pursued by each. Shelton offers real-world examples that reveal how the principles of game theory drive financial markets --and how these same principles can be used to develop winning investment strategies. Through Shelton's organized and precise explanations--he uses familiar games such as chess and checkers to illustrate his points --readers gain a solid understanding of the key principles of game theory before applying them to actual financial market situations. Gaming the Market examines the interaction between price fluctuations and risk acceptance levels and gradually constructs a game theory model which proves that there are probability-based formulas for determining the profitability of any given trade. With appendixes on T-Bond futures, mathematical representations of the model, and QuickBasic code for calculating relative frequencies, Gaming the Market provides a thorough overview of the rules and strategies of game theory. This indispensable reference will prove invaluable to novice and seasoned players alike. Are the markets a game? What are the rules? Who are the players? How can you, as a player, come up with a winning strategy? Now, acclaimed economist Ronald B. Shelton shows you how to master the power of game theory in the first trader's guide to this revolutionary approach to investment decisions! "It's not often that a refreshingly new idea appears in the field of trading strategies or risk management, but Ronald B. Shelton has taken pieces from game theory and betting strategies and transformed them into a new, visual way to make trading decisions. . . . He has been able to put a value on trading situations which can increase your ability to manage risk as well as clarify expectations --both essential ingredients for success." --from the Foreword by Perry Kaufman author of The New Commodity Trading Systems and Methods. "Gaming the Market is a very welcome and most useful new guide to playing profitably in the biggest and most complex game ever devised -- speculating in the financial markets. Investors and traders who study this book will gain valuable insights into the real nature of the markets and willlearn how to play the game to win." --Thomas A. Bierovic, President, Synergy Futures. "Ronald B. Shelton has extended the field of excursion analysis with an innovative and provocative book that is sure to be widely read--and controversial. By examining the actual distributions of price excursion, he shows a technique to estimate your odds going in on a new position, and within the context of game theory, how to evaluate those chances. All traders and analysts seeking objective bases for trading will want to read this book." --John Sweeney, Technical Editor, Technical Analysis of Stocks and Commodities magazine. |
You may like...
Game Theory - Applications in Logistics…
Danijela Tuljak-Suban
Hardcover
R3,060
Discovery Miles 30 600
Game Theory - Breakthroughs in Research…
Information Resources Management Association
Hardcover
R8,209
Discovery Miles 82 090
The Art of Strategy - A Game Theorist's…
Avinash K. Dixit, Barry J. Nalebuff
Paperback
R461
Discovery Miles 4 610
Transnational Cooperation - An…
Clint Peinhardt, Todd Sandler
Hardcover
R3,579
Discovery Miles 35 790
Application of Gaming in New Media…
Pratika Mishra, Swati Oberoi Dham
Hardcover
R5,330
Discovery Miles 53 300
|