![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
It is a common complaint against moral philosophers that their abstract theorising bears little relation to the practical problems of everyday life. Professor Braithwaite believes that this criticism need not be inevitable. With the help of the Theory of Games he shows how arbitration is possible between two neighbours, a jazz trumpeter and a classical pianist, whose performances are a source of mutual discord. The solution of the problem in the lecture is geometrical, and is based on the formal analogy between the logic of the situation and the geometry of a parabola. But an appendix provides the alternative algebraic treatment of a general two-person collaboration situation.
This book focuses on the game-theoretical semantics and epistemic logic of Jaakko Hintikka. Hintikka was a prodigious and esteemed philosopher and logician, and his death in August 2015 was a huge loss to the philosophical community. This book, whose chapters have been in preparation for several years, is dedicated to the work of Jaako Hintikka, and to his memory. This edited volume consists of 23 contributions from leading logicians and philosophers, who discuss themes that span across the entire range of Hintikka's career. Semantic Representationalism, Logical Dialogues, Knowledge and Epistemic logic are among some of the topics covered in this book's chapters. The book should appeal to students, scholars and teachers who wish to explore the philosophy of Jaako Hintikka.
The results presented here (including the assessment of a new tool - inhibitory trees) offer valuable tools for researchers in the areas of data mining, knowledge discovery, and machine learning, especially those whose work involves decision tables with many-valued decisions. The authors consider various examples of problems and corresponding decision tables with many-valued decisions, discuss the difference between decision and inhibitory trees and rules, and develop tools for their analysis and design. Applications include the study of totally optimal (optimal in relation to a number of criteria simultaneously) decision and inhibitory trees and rules; the comparison of greedy heuristics for tree and rule construction as single-criterion and bi-criteria optimization algorithms; and the development of a restricted multi-pruning approach used in classification and knowledge representation.
This book explores mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. The book gathers 81 contributions submitted to the 20th European Conference on Mathematics for Industry, ECMI 2018, which was held in Budapest, Hungary in June 2018. The application areas include: Applied Physics, Biology and Medicine, Cybersecurity, Data Science, Economics, Finance and Insurance, Energy, Production Systems, Social Challenges, and Vehicles and Transportation. In turn, the mathematical technologies discussed include: Combinatorial Optimization, Cooperative Games, Delay Differential Equations, Finite Elements, Hamilton-Jacobi Equations, Impulsive Control, Information Theory and Statistics, Inverse Problems, Machine Learning, Point Processes, Reaction-Diffusion Equations, Risk Processes, Scheduling Theory, Semidefinite Programming, Stochastic Approximation, Spatial Processes, System Identification, and Wavelets. The goal of the European Consortium for Mathematics in Industry (ECMI) conference series is to promote interaction between academia and industry, leading to innovations in both fields. These events have attracted leading experts from business, science and academia, and have promoted the application of novel mathematical technologies to industry. They have also encouraged industrial sectors to share challenging problems where mathematicians can provide fresh insights and perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.
Game theory has been applied to a growing list of practical problems, from antitrust analysis to monetary policy; from the design of auction institutions to the structuring of incentives within firms; from patent races to dispute resolution. The purpose of Game Theory and Business Applications is to show how game theory can be used to model and analyze business decisions. The contents of this revised edition contain a wide variety of business functions - from accounting to operations, from marketing to strategy to organizational design. In addition, specific application areas include market competition, law and economics, bargaining and dispute resolution, and competitive bidding. All of these applications involve competitive decision settings, specifically situations where a number of economic agents in pursuit of their own self-interests and in accordance with the institutional "rules of the game" take actions that together affect all of their fortunes. As this volume demonstrates, game theory provides a compelling guide for analyzing business decisions and strategies.
Evolutionary algorithms are very powerful techniques used to find solutions to real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run.
'Deb's book is complete, eminently readable, and the coverage is scholarly and thorough. It is my pleasure and duty to urge you to buy this book, read it, use it and enjoy it' - David E. Goldberg, University of Illinois at Urbana-Champaign, USA
This book focuses on a development of optimal, flexible, and efficient models and algorithms for cell formation in group technology. Its main aim is to provide a reliable tool that can be used by managers and engineers to design manufacturing cells based on their own preferences and constraints imposed by a particular manufacturing system. This tool could potentially lower production costs by minimizing other costs in a number of areas, thereby increasing profit in a manufacturing system. In the volume, the cell formation problem is considered in a systematic and formalized way, and several models are proposed, both heuristic and exact. The models are based on general clustering problems, and are flexible enough to allow for various objectives and constraints. The authors also provide results of numerical experiments involving both artificial data from academic papers in the field and real manufacturing data to certify the appropriateness of the models proposed. The book was intended to suit the broadest possible audience, and thus all algorithmic details are given in a detailed description with multiple numerical examples and informal explanations are provided for the theoretical results. In addition to managers and industrial engineers, this book is intended for academic researchers and students. It will also be attractive to many theoreticians, since it addresses many open problems in computer science and bioinformatics.
This book deals with critical infrastructure safety analysis based on reliability modelling of multistate ageing system. It shows how changes of the operation process as well as climate-weather changes in the operating area of the critical infrastructure do influence the safety parameters of its assets. Building upon previous authors' research, the book formulates an integrated modeling approach where the multistate critical infrastructure safety model is combined with semi-Markov models for its operation process and for the climate-weather change process. This approach is shown to be successful in determining basic critical infrastructure safety, risk and resilience indicators, regardless of the number of assets and the number of their safety states. Besides the theory, the book reports on a successful application to the safety analysis of a real critical infrastructure, such as a port oil terminal. All in all, this book proposes a comprehensive and timely review of cutting-edge mathematical methods for safety identification, prediction and evaluation of critical infrastructures. It demonstrates that these methods can be applied in practice for analyzing safety of critical infrastructure under time-varying operation and climate-weather change processes.
This book includes papers presented at the ISDG12-GTM2019 International Meeting on Game Theory, as a joint meeting of the 12th International ISDG Workshop and the 13th "International Conference on Game Theory and Management", held in St. Petersburg in July 2019. The topics cover a wide range of game-theoretic models and include both theory and applications, including applications to management.
Martin Grotschel is one of the most influential mathematicians of our time. He has received numerous honors and holds a number of key positions in the international mathematical community. He celebrated his 65th birthday on September 10, 2013. Martin Grotschel s doctoral descendant tree 1983 2012, i.e., the first 30 years, features 39 children, 74 grandchildren, 24 great-grandchildren and 2 great-great-grandchildren, a total of 139 doctoral descendants. This book starts with a personal tribute to Martin Grotschel by the editors (Part I), a contribution by his very special predecessor Manfred Padberg on Facets and Rank of Integer Polyhedra (Part II), and the doctoral descendant tree 1983 2012 (Part III). The core of this book (Part IV) contains 16 contributions, each of which is coauthored by at least one doctoral descendant. The sequence of the articles starts with contributions to the theory of mathematical optimization, including polyhedral combinatorics, extended formulations, mixed-integer convex optimization, super classes of perfect graphs, efficient algorithms for subtree-telecenters, junctions in acyclic graphs and preemptive restricted strip covering, as well as efficient approximation of non-preemptive restricted strip covering. Combinations of new theoretical insights with algorithms and experiments deal with network design problems, combinatorial optimization problems with submodular objective functions and more general mixed-integer nonlinear optimization problems. Applications include VLSI layout design, systems biology, wireless network design, mean-risk optimization and gas network optimization. Computational studies include a semidefinite branch and cut approach for the max k-cut problem, mixed-integer nonlinear optimal control, and mixed-integer linear optimization for scheduling and routing of fly-in safari planes. The two closing articles are devoted to computational advances in general mixed integer linear optimization, the first by scientists working in industry, the second by scientists working in academia. These articles reflect the scientific facets of Martin Grotschel who has set standards in theory, computation and applications.
This book develops a detailed, disaggregated theoretical and empirical framework that explains variations in mass killing by authoritarian regimes globally, with a specific focus on Pakistan, Indonesia, and Malaysia. Using a combination of game-theoretic, statistical, and qualitative approaches, this project explicates when civilians within nondemocratic states will mobilize against the ruling elite, and when such mobilization will result in mass killing. In doing so, it illustrates the important role urbanization and food insecurity historically played, and will continue to play, in generating extreme forms of civilian victimization.
This book addresses two-person zero-sum finite games in which the payoffs in any situation are expressed with fuzzy numbers. The purpose of this book is to develop a suite of effective and efficient linear programming models and methods for solving matrix games with payoffs in fuzzy numbers. Divided into six chapters, it discusses the concepts of solutions of matrix games with payoffs of intervals, along with their linear programming models and methods. Furthermore, it is directly relevant to the research field of matrix games under uncertain economic management. The book offers a valuable resource for readers involved in theoretical research and practical applications from a range of different fields including game theory, operational research, management science, fuzzy mathematical programming, fuzzy mathematics, industrial engineering, business and social economics.
The goal of this book is to elaborate on the main principles of the theory of the Berge equilibrium by answering the following two questions: What are the basic properties of the Berge equilibrium? Does the Berge equilibrium exist, and how can it be calculated? The Golden Rule of ethics, which appears in Christianity, Judaism, Islam, Buddhism, Confucianism and other world religions, states the following: "Behave towards others as you would like them to behave towards you." In any game, each party of conflict seeks to maximize some payoff. Therefore, for each player, the Golden Rule is implemented through the maximization of his/her payoff by all other players, which matches well with the concept of the Berge equilibrium. The approach presented here will be of particular interest to researchers (including undergraduates and graduates) and economists focused on decision-making under complex conflict conditions. The peaceful resolution of conflicts is the cornerstone of the approach: as a matter of fact, the Golden Rule precludes military clashes and violence. In turn, the new approach requires new methods; in particular, the existence problems are reduced to saddle point design for the Germeier convolution of payoff functions, with further transition to mixed strategies in accordance with the standard procedure employed by E. Borel, J. von Neumann, J. Nash, and their followers. Moreover, this new approach has proven to be efficient and fruitful with regard to a range of other important problems in mathematical game theory, which are considered in the Appendix.
The Gradient Test: Another Likelihood-Based Test presents the latest on the gradient test, a large-sample test that was introduced in statistics literature by George R. Terrell in 2002. The test has been studied by several authors, is simply computed, and can be an interesting alternative to the classical large-sample tests, namely, the likelihood ratio (LR), Wald (W), and Rao score (S) tests. Due to the large literature about the LR, W and S tests, the gradient test is not frequently used to test hypothesis. The book covers topics on the local power of the gradient test, the Bartlett-corrected gradient statistic, the gradient statistic under model misspecification, and the robust gradient-type bounded-influence test.
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
The book focuses on Social Collective Intelligence, a term used to denote a class of socio-technical systems that combine, in a coordinated way, the strengths of humans, machines and collectives in terms of competences, knowledge and problem solving capabilities with the communication, computing and storage capabilities of advanced ICT. Social Collective Intelligence opens a number of challenges for researchers in both computer science and social sciences; at the same time it provides an innovative approach to solve challenges in diverse application domains, ranging from health to education and organization of work. The book will provide a cohesive and holistic treatment of Social Collective Intelligence, including challenges emerging in various disciplines (computer science, sociology, ethics) and opportunities for innovating in various application areas. By going through the book the reader will gauge insight and knowledge into the challenges and opportunities provided by this new, exciting, field of investigation. Benefits for scientists will be in terms of accessing a comprehensive treatment of the open research challenges in a multidisciplinary perspective. Benefits for practitioners and applied researchers will be in terms of access to novel approaches to tackle relevant problems in their field. Benefits for policy-makers and public bodies representatives will be in terms of understanding how technological advances can support them in supporting the progress of society and economy.
Many systems architecture optimization problems are characterized by a variable number of optimization variables. Many classical optimization algorithms are not suitable for such problems. The book presents recently developed optimization concepts that are designed to solve such problems. These new concepts are implemented using genetic algorithms and differential evolution. The examples and applications presented show the effectiveness of the use of these new algorithms in optimizing systems architectures. The book focuses on systems architecture optimization. It covers new algorithms and its applications, besides reviewing fundamental mathematical concepts and classical optimization methods. It also provides detailed modeling of sample engineering problems. The book is suitable for graduate engineering students and engineers. The second part of the book includes numerical examples on classical optimization algorithms, which are useful for undergraduate engineering students. While focusing on the algorithms and their implementation, the applications in this book cover the space trajectory optimization problem, the optimization of earth orbiting satellites orbits, and the optimization of the wave energy converter dynamic system: architecture and control. These applications are illustrated in the starting of the book, and are used as case studies in later chapters for the optimization methods presented in the book.
This book contains selected papers presented at ICGEC 2021, the 14th International Conference on Genetic and Evolutionary Computing, held from October 21-23, 2021 in Jilin City, China. The conference was technically co-sponsored by Springer, Northeast Electric Power University Fujian University of Technology, Shandong University of Science and Technology, and Western Norway University of Applied Sciences. It is intended as an international forum for the researchers and professionals in all areas of genetic and evolutionary computing. And the readers may learn the up-to-date techniques of the mentioned topics, including swarm intelligence, artificial intelligence, information hiding and data mining techniques, which can help them to bring new ideas or apply the designed approaches from the collected papers to their professional jobs.
A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.
This book describes the fundamental and theoretical concepts of optimization algorithms in a systematic manner, along with their potential applications and implementation strategies in mining engineering. It explains basics of systems engineering, linear programming, and integer linear programming, transportation and assignment algorithms, network analysis, dynamic programming, queuing theory and their applications to mine systems. Reliability analysis of mine systems, inventory management in mines, and applications of non-linear optimization in mines are discussed as well. All the optimization algorithms are explained with suitable examples and numerical problems in each of the chapters. Features include: * Integrates operations research, reliability, and novel computerized technologies in single volume, with a modern vision of continuous improvement of mining systems. * Systematically reviews optimization methods and algorithms applied to mining systems including reliability analysis. * Gives out software-based solutions such as MATLAB (R), AMPL, LINDO for the optimization problems. * All discussed algorithms are supported by examples in each chapter. * Includes case studies for performance improvement of the mine systems. This book is aimed primarily at professionals, graduate students, and researchers in mining engineering.
Reviews the literature of the Moth-Flame Optimization algorithm; Provides an in-depth analysis of equations, mathematical models, and mechanisms of the Moth-Flame Optimization algorithm; Proposes different variants of the Moth-Flame Optimization algorithm to solve binary, multi-objective, noisy, dynamic, and combinatorial optimization problems; Demonstrates how to design, develop, and test different hybrids of Moth-Flame Optimization algorithm; Introduces several applications areas of the Moth-Flame Optimization algorithm focusing in sustainability.
This book presents new techniques and methods for distributed control and optimization of networked microgrids. Distributed consensus issues under network-based and event-triggered mechanisms are first addressed in a multi-agent system framework, which can explicitly characterize the relationship between communication resources and the control performance. Then, considering the effects of network uncertainties, multi-agent system-based distributed schemes are tailored to solve the fundamental issues of networked microgrids such as distributed frequency regulation, voltage regulation, active power sharing/load sharing, and energy management. The monograph will contribute to stimulating extensive interest of researchers in electrical and control fields.
This book reports on the latest advances in adaptive critic control with robust stabilization for uncertain nonlinear systems. Covering the core theory, novel methods, and a number of typical industrial applications related to the robust adaptive critic control field, it develops a comprehensive framework of robust adaptive strategies, including theoretical analysis, algorithm design, simulation verification, and experimental results. As such, it is of interest to university researchers, graduate students, and engineers in the fields of automation, computer science, and electrical engineering wishing to learn about the fundamental principles, methods, algorithms, and applications in the field of robust adaptive critic control. In addition, it promotes the development of robust adaptive critic control approaches, and the construction of higher-level intelligent systems.
This book presents the construction and resolution of 50 practical optimization problems and covers an exceptionally wide range, including games-associated problems (Unblock Me, Sudokus), logistical problems, and problems concerning plant distribution, production, operations scheduling, management and resource allocation. The problems are divided into 5 difficulty levels. Problems in the first few levels are focused on learning the model construction methodology, while those in the last level include complex optimization environments. For each problem solution, the specific steps are illustrated, promoting reader comprehension. In addition, all the models are implemented in an optimization library, LINGO, their solutions have been analyzed and their correct construction has been verified. The book also includes a simple guide to implementing models in LINGO in a straightforward manner and in any input data format (text files, spreadsheets or databases). As an ideal companion to the author's previously published work Modelling in Mathematical Programming, the book is intended as a basic tool for students of operations research, and for researchers in any advanced area involving mathematical programming. |
You may like...
Spatial Econometrics - Qualitative and…
Badi H. Baltagi, James P. LeSage, …
Hardcover
R4,521
Discovery Miles 45 210
Specifying and Diagnostically Testing…
Houston H. Stokes
Hardcover
Operations and Supply Chain Management
James Evans, David Collier
Hardcover
International Parity Conditions…
Razzaque H. Bhatti, Imad A Moosa
Hardcover
R2,688
Discovery Miles 26 880
The Measurement of Productive Efficiency…
Harold O. Fried, C.A. Knox Lovell, …
Hardcover
R1,637
Discovery Miles 16 370
Introduction to Computational Economics…
Hans Fehr, Fabian Kindermann
Hardcover
R4,258
Discovery Miles 42 580
Essays in Honor of Aman Ullah
Thomas B Fomby, Juan Carlos Escanciano, …
Hardcover
R4,550
Discovery Miles 45 500
The Oxford Handbook of Applied Bayesian…
Anthony O'Hagan, Mike West
Hardcover
R4,188
Discovery Miles 41 880
Advertising, Alcohol Consumption, and…
Peter A. Cook, Joseph C. Fisher
Hardcover
|