![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization
This book presents the development of an optimization platform for geotechnical engineering, which is one of the key components in smart geotechnics. The book discusses the fundamentals of the optimization algorithm with constitutive models of soils. Helping readers easily understand the optimization algorithm applied in geotechnical engineering, this book first introduces the methodology of the optimization-based parameter identification, and then elaborates the principle of three newly developed efficient optimization algorithms, followed by the ideas of a variety of laboratory tests and formulations of constitutive models. Moving on to the application of optimization methods in geotechnical engineering, this book presents an optimization-based parameter identification platform with a practical and concise interface based on the above theories. The book is intended for undergraduate and graduate-level teaching in soil mechanics and geotechnical engineering and other related engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering and operations research fields.
This monograph presents a comprehensive treatment of the maximum-entropy sampling problem (MESP), which is a fascinating topic at the intersection of mathematical optimization and data science. The text situates MESP in information theory, as the algorithmic problem of calculating a sub-vector of pre-specificed size from a multivariate Gaussian random vector, so as to maximize Shannon's differential entropy. The text collects and expands on state-of-the-art algorithms for MESP, and addresses its application in the field of environmental monitoring. While MESP is a central optimization problem in the theory of statistical designs (particularly in the area of spatial monitoring), this book largely focuses on the unique challenges of its algorithmic side. From the perspective of mathematical-optimization methodology, MESP is rather unique (a 0/1 nonlinear program having a nonseparable objective function), and the algorithmic techniques employed are highly non-standard. In particular, successful techniques come from several disparate areas within the field of mathematical optimization; for example: convex optimization and duality, semidefinite programming, Lagrangian relaxation, dynamic programming, approximation algorithms, 0/1 optimization (e.g., branch-and-bound), extended formulation, and many aspects of matrix theory. The book is mainly aimed at graduate students and researchers in mathematical optimization and data analytics.
The author of this book made an attempt to create the general
theory of optimization of linear systems (both distributed and
lumped) with a singular control. The book touches upon a wide range
of issues such as solvability of boundary values problems for
partial differential equations with generalized right-hand sides,
the existence of optimal controls, the necessary conditions of
optimality, the controllability of systems, numerical methods of
approximation of generalized solutions of initial boundary value
problems with generalized data, and numerical methods for
approximation of optimal controls. In particular, the problems of
optimization of linear systems with lumped controls (pulse, point,
pointwise, mobile and so on) are investigated in detail.
Features Provides a uniquely historical perspective on the mathematical underpinnings of a comprehensive list of games Suitable for a broad audience of differing mathematical levels. Anyone with a passion for games, game theory, and mathematics will enjoy this book, whether they be students, academics, or game enthusiasts Covers a wide selection of topics at a level that can be appreciated on a historical, recreational, and mathematical level.
Models and Experiments in Risk and Rationality presents original contributions to the areas of individual choice, experimental economics, operations and analysis, multiple criteria decision making, market uncertainty, game theory and social choice. The papers, which were presented at the FUR VI conference, are arranged to appear in order of increasing complexity of the decision environment or social context in which they situate themselves. The first section Psychological Aspects of Risk-Bearing', considers choice at the purely individual level and for the most part, free of any specific economic or social context. The second section examines individual choice within the classical expected utility approach while the third section works from a perspective that includes non-expected utility preferences over lotteries. Section four, Multiple Criteria Decision-Making Under Uncertainty', considers the more specialized but crucial context of uncertain choice involving tradeoffs between competing criteria -- a field which is becoming of increasing importance in applied decision analysis. The final two sections examine uncertain choice in social or group contexts.
Contains case studies from engineering and operations research Includes commented literature for each chapter
The research of Antanas Zilinskas has focused on developing models for global optimization, implementing and investigating the corresponding algorithms, and applying those algorithms to practical problems. This volume, dedicated to Professor Zilinskas on the occasion of his 60th birthday, contains new survey papers in which leading researchers from the field present various models and algorithms for solving global optimization problems.
This volume provides updated, in-depth material on the application of intelligent optimization in biology and medicine. The aim of the book is to present solutions to the challenges and problems facing biology and medicine applications. This Volume comprises of 13 chapters, including an overview chapter, providing an up-to-date and state-of-the research on the application of intelligent optimization for bioinformatics applications, DNA based Steganography, a modified Particle Swarm Optimization Algorithm for Solving Capacitated Maximal Covering Location Problem in Healthcare Systems, Optimization Methods for Medical Image Super Resolution Reconstruction and breast cancer classification. Moreover, some chapters that describe several bio-inspired approaches in MEDLINE Text Mining, DNA-Binding Proteins and Classes, Optimized Tumor Breast Cancer Classification using Combining Random Subspace and Static Classifiers Selection Paradigms, and Dental Image Registration. The book will be a useful compendium for a broad range of readers-from students of undergraduate to postgraduate levels and also for researchers, professionals, etc.-who wish to enrich their knowledge on Intelligent Optimization in Biology and Medicine and applications with one single book.
The aim of Metaheuristics: Progress in Complex Systems Optimization is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field. Highlighted are recent developments in the areas of Simulated Annealing, Path Relinking, Scatter Search, Tabu Search, Variable Neighborhood Search, Hyper-heuristics, Constraint Programming, Iterated Local Search, GRASP, bio-inspired algorithms like Genetic Algorithms, Memetic Algorithms, Ant Colony Optimization or Swarm Intelligence, and several other paradigms.
In the fifties and sixties, several real problems, old and new, especially in Physics, Mechanics, Fluidodynamics, Structural Engi- neering, have shown the need of new mathematical models for study- ing the equilibrium of a system. This has led to the formulation of Variational Inequalities (by G. Stampacchia), and to the develop- ment of Complementarity Systems (by W.S. Dorn, G.B. Dantzig, R.W. Cottle, O.L. Mangasarian et al.) with important applications in the elasto-plastic field (initiated by G. Maier). The great advan- tage of these models is that the equilibrium is not necessarily the extremum of functional, like energy, so that no such functional must be supposed to exist. In the same decades, in some fields like Control Theory, Net- works, Industrial Systems, Logistics, Management Science, there has been a strong request of mathmatical models for optimizing situa- tions where there are concurrent objectives, so that Vector Optimiza- tion (initiated by W. Pareto) has received new impetus. With regard to equilibrium problems, Vector Optimization has the above - mentioned drawback of being obliged to assume the exis- tence of a (vector) functional. Therefore, at the end of the seventies the study of Vector Variational Inequalities began with the scope of exploiting the advantages of both variational and vector models. This volume puts together most of the recent mathematical results in Vector Variational Inequalities with the purpose of contributing to further research.
This book presents new optimization algorithms designed to improve the efficiency of tool paths for five-axis NC machining of sculptured surfaces. The book covers both the structure of the SLAM problem in general and proposes a new extremely efficient approach. It can be used by undergraduate and graduate students and researchers in the field of NC machining and CAD/CAM as well as by corporate research groups for advanced optimization of cutting operations.
This is an open access book discusses readers to various methods of modeling plans and policies that address public sector issues and problems. Written for public policy and social sciences students at the upper undergraduate and graduate level, as well as public sector decision-makers, it demonstrates and compares the development and use of various deterministic and probabilistic optimization and simulation modeling methods for analyzing planning and management issues. These modeling tools offer a means of identifying and evaluating alternative plans and policies based on their physical, economic, environmental, and social impacts. Learning how to develop and use the mathematical modeling tools introduced in this book will give students useful skills when in positions of having to make informed public policy recommendations or decisions.
In the field of nondifferentiable nonconvex optimization, one of the most intensely investigated areas is that of optimization problems involving multivalued mappings in constraints or as the objective function. This book focuses on the tremendous development in the field that has taken place since the publication of the most recent volumes on the subject. The new topics studied include the formulation of optimality conditions using different kinds of generalized derivatives for set-valued mappings (such as, for example, the coderivative of Mordukhovich), the opening of new applications (e.g., the calibration of water supply systems), or the elaboration of new solution algorithms (e.g., smoothing methods). The book is divided into three parts. The focus in the first part is on bilevel programming. The chapters in the second part contain investigations of mathematical programs with equilibrium constraints. The third part is on multivalued set-valued optimization. The chapters were written by outstanding experts in the areas of bilevel programming, mathematical programs with equilibrium (or complementarity) constraints (MPEC), and set-valued optimization problems.
This book covers a large spectrum of cutting-edge game theory applications in management science in which Professor Georges Zaccour has made significant contributions. The book consists of 21 chapters and highlights the latest treatments of game theory in various areas, including marketing, supply chains, energy and environmental management, and cyber defense. With this book, former Ph.D. students and successful research collaborators of Professor Zaccour wish to honor his many scientific achievements.
This book is an authoritative collection of contributions in the field of soft-computing. Based on selected works presented at the 6th World Conference on Soft Computing, held on May 22-25, 2016, in Berkeley, USA, it describes new theoretical advances, as well as cutting-edge methods and applications. Theories cover a wealth of topics, such as fuzzy logic, cognitive modeling, Bayesian and probabilistic methods, multi-criteria decision making, utility theory, approximate reasoning, human-centric computing and many others. Applications concerns a number of fields, such as internet and semantic web, social networks and trust, control and robotics, computer vision, medicine and bioinformatics, as well as finance, security and e-Commerce, among others. Dedicated to the 50th Anniversary of Fuzzy Logic and to the 95th Birthday Anniversary of Lotfi A. Zadeh, the book not only offers a timely view on the field, yet it also discusses thought-provoking developments and challenges, thus fostering new research directions in the diverse areas of soft computing.
This book covers central issues in mitigating supply chain risks from various perspectives. Today's supply chains are vulnerable to disruptions that can have a significant impact on firms, business and performance. The aim of supply chain risk management is to identify the potential sources of risks and implement appropriate actions in order to mitigate supply chain disruptions. In this regard, the book presents a wealth of methods, strategies and analyses that are essential for mitigating supply chain risks. As a comprehensive collection of the latest research and cutting-edge developments in supply chain risk and its mitigation, the book is structured into four main parts, addressing supply chain risk strategies and developments; supply chain risk management review; supply chain sustainability and resilience; and supply chain analysis and risk management applications. The contributing authors are leading academic researchers and practitioners, who combine findings and research results with a practical and contemporary view on how companies can best manage supply chain risks and disruptions, as well as how to create resilient and sustainable supply chains. This book can be used as an essential resource for students and scholars who are interested in pursuing research or teaching courses on the rapidly growing field of supply chain management. It also offers an interesting and informative read for managers and practitioners who need to deepen their understanding of effective supply chain risk management.
The theory of probability began in the seventeenth century with attempts to calculate the odds of winning in certain games of chance. However, it was not until the middle of the twentieth century that mathematicians de veloped general techniques for maximizing the chances of beating a casino or winning against an intelligent opponent. These methods of finding op timal strategies for a player are at the heart of the modern theories of stochastic control and stochastic games. There are numerous applications to engineering and the social sciences, but the liveliest intuition still comes from gambling. The now classic work How to Gamble If You Must: Inequalities for Stochastic Processes by Dubins and Savage (1965) uses gambling termi nology and examples to develop an elegant, deep, and quite general theory of discrete-time stochastic control. A gambler "controls" the stochastic pro cess of his or her successive fortunes by choosing which games to play and what bets to make."
Structural optimization is currently attracting considerable attention. Interest in - search in optimal design has grown in connection with the rapid development of aeronautical and space technologies, shipbuilding, and design of precision mach- ery. A special ?eld in these investigations is devoted to structural optimization with incomplete information (incomplete data). The importance of these investigations is explained as follows. The conventional theory of optimal structural design - sumes precise knowledge of material parameters, including damage characteristics and loadings applied to the structure. In practice such precise knowledge is seldom available. Thus, it is important to be able to predict the sensitivity of a designed structure to random ?uctuations in the environment and to variations in the material properties. To design reliable structures it is necessary to apply the so-called gu- anteed approach, based on a "worst case scenario" or a more optimistic probabilistic approach, if we have additional statistical data. Problems of optimal design with incomplete information also have consid- able theoretical importance. The introduction and investigations into new types of mathematical problems are interesting in themselves. Note that some ga- theoretical optimization problems arise for which there are no systematic techniques of investigation. This monograph is devoted to the exposition of new ways of formulating and solving problems of structural optimization with incomplete information. We recall some research results concerning the optimum shape and structural properties of bodies subjected to external loadings.
Many of the most challenging problems in the applied sciences involve non-differentiable structures as well as partial differential operators, thus leading to non-smooth distributed parameter systems. This edited volume aims to establish a theoretical and numerical foundation and develop new algorithmic paradigms for the treatment of non-smooth phenomena and associated parameter influences. Other goals include the realization and further advancement of these concepts in the context of robust and hierarchical optimization, partial differential games, and nonlinear partial differential complementarity problems, as well as their validation in the context of complex applications. Areas for which applications are considered include optimal control of multiphase fluids and of superconductors, image processing, thermoforming, and the formation of rivers and networks. Chapters are written by leading researchers and present results obtained in the first funding phase of the DFG Special Priority Program on Nonsmooth and Complementarity Based Distributed Parameter Systems: Simulation and Hierarchical Optimization that ran from 2016 to 2019.
This book presents essential concepts of traditional Flower Pollination Algorithm (FPA) and its recent variants and also its application to find optimal solution for a variety of real-world engineering and medical problems. Swarm intelligence-based meta-heuristic algorithms are extensively implemented to solve a variety of real-world optimization problems due to its adaptability and robustness. FPA is one of the most successful swarm intelligence procedures developed in 2012 and extensively used in various optimization tasks for more than a decade. The mathematical model of FPA is quite straightforward and easy to understand and enhance, compared to other swarm approaches. Hence, FPA has attracted attention of researchers, who are working to find the optimal solutions in variety of domains, such as N-dimensional numerical optimization, constrained/unconstrained optimization, and linear/nonlinear optimization problems. Along with the traditional bat algorithm, the enhanced versions of FPA are also considered to solve a variety of optimization problems in science, engineering, and medical applications.
Bayesian decision theory is known to provide an effective framework for the practical solution of discrete and nonconvex optimization problems. This book is the first to demonstrate that this framework is also well suited for the exploitation of heuristic methods in the solution of such problems, especially those of large scale for which exact optimization approaches can be prohibitively costly. The book covers all aspects ranging from the formal presentation of the Bayesian Approach, to its extension to the Bayesian Heuristic Strategy, and its utilization within the informal, interactive Dynamic Visualization strategy. The developed framework is applied in forecasting, in neural network optimization, and in a large number of discrete and continuous optimization problems. Specific application areas which are discussed include scheduling and visualization problems in chemical engineering, manufacturing process control, and epidemiology. Computational results and comparisons with a broad range of test examples are presented. The software required for implementation of the Bayesian Heuristic Approach is included. Although some knowledge of mathematical statistics is necessary in order to fathom the theoretical aspects of the development, no specialized mathematical knowledge is required to understand the application of the approach or to utilize the software which is provided. Audience: The book is of interest to both researchers in operations research, systems engineering, and optimization methods, as well as applications specialists concerned with the solution of large scale discrete and/or nonconvex optimization problems in a broad range of engineering and technological fields. It may be used as supplementary material for graduate level courses.
In a world with highly competitive markets and economic instability due to capitalization, industrial competition has increasingly intensified. In order for many industries to survive and succeed, they need to develop highly effective coordination between supply chain partners, dynamic collaborative and strategic alliance relationships, and efficient logistics and supply chain network designs. Consequently, in the past decade, there has been an explosion of interest among academic researchers and industrial practitioners in innovative supply chain and logistics models, algorithms, and coordination policies. Mathematically distinct from classical supply chain management, this emerging research area has been proven to be useful and applicable to a wide variety of industries. This book brings together recent advances in supply chain and logistics research and computational optimization that apply to a collaborative environment in the enterprise.
This book describes applications of Jaya and Rao algorithms on real case studies concerning different renewable energy sources. In the last few decades, researchers have focused on renewable energy resources like solar energy, bio-energy, wave energy, ocean thermal energy, tidal energy, geothermal energy, and wind energy. This has resulted in the development of new techniques and tools that could harvest energy from renewable energy sources. Many researchers and scientists have focused on developing and optimizing the energy systems to extract and utilize renewable energy more efficiently. In this book, recently developed Jaya and Rao (Rao-1, Rao-2, and Rao-3) algorithms are introduced for single- and multi-objective optimization of selected renewable energy systems. The results of applications of the different versions of Jaya and Rao algorithms are compared with the other optimization techniques like GA, NSGA-II, PSO, MOPSO, ABC, etc., and the performance of the Jaya and Rao algorithms is highlighted compared to other optimization algorithms in the case of renewable energy systems. The book also includes the validation of different versions of the Jaya and Rao algorithms through the application to complex single- and multi-objective unconstrained benchmark functions. The algorithms and computer codes of different version of Jaya and Rao algorithms are included in the book that will be very much useful to readers in industry and academic research.
A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research.
This proceedings volume highlights the state-of-the-art knowledge related to optimization, decisions science and problem solving methods, as well as their application in industrial and territorial systems. It includes contributions tackling these themes using models and methods based on continuous and discrete optimization, network optimization, simulation and system dynamics, heuristics, metaheuristics, artificial intelligence, analytics, and also multiple-criteria decision making. The number and the increasing size of the problems arising in real life require mathematical models and solution methods adequate to their complexity. There has also been increasing research interest in Big Data and related challenges. These challenges can be recognized in many fields and systems which have a significant impact on our way of living: design, management and control of industrial production of goods and services; transportation planning and traffic management in urban and regional areas; energy production and exploitation; natural resources and environment protection; homeland security and critical infrastructure protection; development of advanced information and communication technologies. The chapters in this book examine how to deal with new and emerging practical problems arising in these different fields through the presented methodologies and their applications. The chapter topics are applicable for researchers and practitioners working in these areas, but also for the operations research community. The contributions were presented during the international conference "Optimization and Decision Science" (ODS2017), held at Hilton Sorrento Palace Conference Center, Sorrento, Italy, September 4 - 7, 2017. ODS 2017, was organized by AIRO, Italian Operations Research Society, in cooperation with DIETI (Department of Electrical Engineering and Information Technology) of University "Federico II" of Naples. |
![]() ![]() You may like...
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
The History and Allure of Interactive…
Mark Kretzschmar, Sara Raffel
Hardcover
R3,197
Discovery Miles 31 970
Game Theory - Breakthroughs in Research…
Information Resources Management Association
Hardcover
R8,905
Discovery Miles 89 050
Handbook of Experimental Game Theory
C. M. Capra, Rachel T. A. Croson, …
Hardcover
R6,736
Discovery Miles 67 360
|