![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
This book discusses the main techniques and newest trends to manage and optimize the production and service systems. The book begins by examining the three main levels of decision systems in production: the long term (strategic), the middle term (tactical) and short term (operational). It also considers online management as a new level (a sub level of the short term). As each level encounters specific problems, appropriate approaches to deal with these are introduced and explained. These problems include the line design, the line balancing optimization, the physical layout of the production or service system, the forecasting optimization, the inventory management, the scheduling etc. Metaheuristics for Production Systems then explores logistic optimization from two different perspectives: internal (production management), addressing issues of scheduling, layout and line designs, and external (supply chain management) focusing on transportation optimization, supply chain evaluation, and location of production. The book also looks at NP-hard problems that are common in production management. These complex configurations may mean that optimal solutions may not be reached due to variables, but the authors help provide a good solution for such problems. The effective new results and solutions offered in this book should appeal to researchers, managers, and engineers in the production and service industries.
This book presents best practices involving applications of decision sciences, business tactics and behavioral sciences for COVID-19. Addressing concrete problems in these vital fields, it focuses on theoretical and methodological investigations of managerial decisions that drive production and service enterprises' productivity and success. Moreover, it presents optimization techniques and tools that can also be adopted for other applications in various research areas after a thorough analysis of the specific problem. The book is intended for researchers and practitioners seeking optimum solutions to real-life problems in various application areas concerning COVID-19, helping them make scientifically founded decisions.
This volume is a collection of research works to honor the late Professor Mark H.A. Davis, whose pioneering work in the areas of Stochastic Processes, Filtering, and Stochastic Optimization spans more than five decades. Invited authors include his dissertation advisor, past collaborators, colleagues, mentees, and graduate students of Professor Davis, as well as scholars who have worked in the above areas. Their contributions may expand upon topics in piecewise deterministic processes, pathwise stochastic calculus, martingale methods in stochastic optimization, filtering, mean-field games, time-inconsistency, as well as impulse, singular, risk-sensitive and robust stochastic control.
This book addresses two disciplines that have traditionally occupied completely different realms: quantum information and computation, and game theory. Helping readers connect these fields, it appeals to a wide audience, including computer scientists, engineers, mathematicians, physicists, biologists or economists. The book is richly illustrated and basic concepts are accessible to readers with basic training in science. As such it is useful for undergraduate students as well as established academicians and researchers. Further, the didactic and tutorial-like style makes it ideal supplementary reading for courses on quantum information and computation, game theory, cellular automata and simulation.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
The Moment-SOS hierarchy is a powerful methodology that is used to solve the Generalized Moment Problem (GMP) where the list of applications in various areas of Science and Engineering is almost endless. Initially designed for solving polynomial optimization problems (the simplest example of the GMP), it applies to solving any instance of the GMP whose description only involves semi-algebraic functions and sets. It consists of solving a sequence (a hierarchy) of convex relaxations of the initial problem, and each convex relaxation is a semidefinite program whose size increases in the hierarchy.The goal of this book is to describe in a unified and detailed manner how this methodology applies to solving various problems in different areas ranging from Optimization, Probability, Statistics, Signal Processing, Computational Geometry, Control, Optimal Control and Analysis of a certain class of nonlinear PDEs. For each application, this unconventional methodology differs from traditional approaches and provides an unusual viewpoint. Each chapter is devoted to a particular application, where the methodology is thoroughly described and illustrated on some appropriate examples.The exposition is kept at an appropriate level of detail to aid the different levels of readers not necessarily familiar with these tools, to better know and understand this methodology.
The progress of society can only happen through interpersonal cooperation, because only cooperation can bring about mutual benefit, thus bringing happiness to each person. This should be our collective rationality, but we often see it conflicts with individual interests, which leads to the so-called "Prisoners' Dilemma" and does not bring happiness to all. From a game theoretical perspective, this book addresses the issue of how people can cooperate better. It has two objectives. The first is to use common language to systematically introduce the basic methodologies and core conclusions of Game Theory, including the Nash equilibrium, multiple equilibriums, dynamic games, etc. Mathematics and theoretical models are used to the minimum necessary scope too, to make this book get access to ordinary readers with elementary mathematical training. The second objective is to utilize these methods and conclusions to analyze various Chinese social issues and institutional arrangements, with a focus on the reasons people exhibit non-cooperative behaviors as well as the institutions and cultures that promote interpersonal cooperation. In addition to economics, specialists in sociology, law, history, politics and management will also be attracted by this book for its insightful analysis on the issue of cooperation in these fields. Also, readers curious about Chinese society will benefit from this book.
There are thousands of books relating to poker, blackjack, roulette and baccarat, including strategy guides, statistical analysis, psychological studies, and much more. However, there are no books on Pell, Rouleno, Street Dice, and many other games that have had a short life in casinos! While this is understandable - most casino gamblers have not heard of these games, and no one is currently playing them - their absence from published works means that some interesting mathematics and gaming history are at risk of being lost forever. Table games other than baccarat, blackjack, craps, and roulette are called carnival games, as a nod to their origin in actual traveling or seasonal carnivals. Mathematics of Casino Carnival Games is a focused look at these games and the mathematics at their foundation. Features * Exercises, with solutions, are included for readers who wish to practice the ideas presented * Suitable for a general audience with an interest in the mathematics of gambling and games * Goes beyond providing practical 'tips' for gamblers, and explores the mathematical principles that underpin gambling games
The combined efforts of the Physicists and the Economists in recent years in a- lyzing and modeling various dynamic phenomena in monetary and social systems have led to encouragingdevelopments,generally classi?ed under the title of Eco- physics. These developmentsshare a commonambitionwith the alreadyestablished ?eld of Quantitative Economics. This volume intends to offer the reader a glimpse of these two parallel initiatives by collecting review papers written by well-known experts in the respective research frontiers in one cover. This massive book presents a unique combination of research papers contributed almost equally by Physicists and Economists. Additional contributions from C- puter Scientists and Mathematicians are also included in this volume. It consists of two parts: The ?rst part concentrates on econophysics of games and social choices and is the proceedings of the Econophys-Kolkata IV workshop held at the Indian Statistical Institute and the Saha Institute of Nuclear Physics, both in Kolkata, d- ing March 9-13, 2009. The second part consists of contributionsto quantitative e- nomics by experts in connection with the Platinum Jubilee celebration of the Indian Statistical Institute. In this connectiona Forewordfor the volume, written by Sankar K. Pal, Director of the Indian Statistical Institute, is put forth. Both parts specialize mostly on frontier problems in games and social choices. The?rst partofthebookdealswith severalrecentdevelopmentsineconophysics. Game theory is integral to the formulation of modern economic analysis. Often games display a situation where the social optimal could not be reached as a - sult of non co-operation between different agents.
This book is an introduction to the mathematical theory of optimal control of processes governed by ordinary differential eq- tions. It is intended for students and professionals in mathematics and in areas of application who want a broad, yet relatively deep, concise and coherent introduction to the subject and to its relati- ship with applications. In order to accommodate a range of mathema- cal interests and backgrounds among readers, the material is arranged so that the more advanced mathematical sections can be omitted wi- out loss of continuity. For readers primarily interested in appli- tions a recommended minimum course consists of Chapter I, the sections of Chapters II, III, and IV so recommended in the introductory sec tions of those chapters, and all of Chapter V. The introductory sec tion of each chapter should further guide the individual reader toward material that is of interest to him. A reader who has had a good course in advanced calculus should be able to understand the defini tions and statements of the theorems and should be able to follow a substantial portion of the mathematical development. The entire book can be read by someone familiar with the basic aspects of Lebesque integration and functional analysis. For the reader who wishes to find out more about applications we recommend references [2], [13], [33], [35], and [50], of the Bibliography at the end of the book.
This state-of-the art collection of papers analyses various aspects of the theory of externalities and public goods. The contributions employ new analytical techniques like the aggregative game approach, and discuss the philosophical underpinnings of the theory. Furthermore, they highlight a range of topical empirical applications including climate policy and counterterrorism. This contributed volume was written in memory of Richard C. Cornes, a pioneer in the theory of externalities and public goods.
This volume consists of 14 contributed chapters written by leading experts, offering in-depth discussions of the mathematical modeling and algorithmic aspects for tackling a range of space engineering applications. This book will be of interest to researchers and practitioners working in the field of space engineering. Since it offers an in-depth exposition of the mathematical modelling, algorithmic and numerical solution aspects of the topics covered, the book will also be useful to aerospace engineering graduates and post-graduate students who wish to expand their knowledge by studying real-world applications and challenges that they will encounter in their profession. Readers will obtain a broad overview of some of the most challenging space engineering operational scenarios of today and tomorrow: this will be useful for managers in the aerospace field, as well as in other industrial sectors. The contributed chapters are mainly focused on space engineering practice. Researchers and practitioners in mathematical systems modelling, operations research, optimization, and optimal control will also benefit from the case studies presented in this book. The model development and optimization approaches discussed can be extended towards other application areas that are not directly related to space engineering. Therefore, the book can be a useful reference to assist in the development of new modelling and optimization applications.
Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty. Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.
Various imperfections in existing market systems prevent the free market from serving as a truly efficient allocation mechanism, but optimization of economic activities provides an effective remedial measure. Cooperative optimization claims that socially optimal and individually rational solutions to decision problems involving strategic action over time exist. To ensure that cooperation will last throughout the agreement period, however, the stringent condition of subgame consistency is required. This textbook presents a study of subgame consistent economic optimization, developing game-theoretic optimization techniques to establish the foundation for an effective policy menu to tackle the suboptimal behavior that the conventional market mechanism fails to resolve.
Stefan VoC and David Woodruff have edited a carefully refereed volume by experts on optimization software class libraries. The book focuses on flexible and powerful collections of computational objects for addressing complex optimization problems. These component class libraries are suitable for use in the increasing number of optimization applications that stand alone or are imbedded in advanced planning, engineering, and bioinformatics applications. Most researchers today use a number of modeling language software packages and a number of software solvers to solve computational problems. This book outlines packaged software class libraries to enable researchers to find cost-effective and efficient methods of getting problems coded into the computer, or into a modeling language package or into optimizing solvers - hence providing software coding solutions to whatever specialized needs a specific problem might require. Optimization Software Class Libraries provides the reader with a rich overview of the variety of components for framing problems. With the growing number of application-specific software systems and advance planning methods for specific classes of problems, class libraries for optimization are increasingly useful, practical, and needed. Benefits of Optimization Software Class Libraries are: Researchers will be able to invest more effort in examining better algorithms, performing experiments, and making use of problem-specific knowledge; The libraries that encapsulate general-purpose algorithms as reusable, high-quality software components are themselves significant contributions to ongoing research; and In addition to the research benefits, the libraries described providesubstantial practical value to organizations that adopt them.
Game theory is a rich and active area of research of which this new volume of the Annals of the International Society of Dynamic Games is yet fresh evidence. Since the second half of the 20th century, the area of dynamic games has man aged to attract outstanding mathematicians, who found exciting open questions requiring tools from a wide variety of mathematical disciplines; economists, so cial and political scientists, who used game theory to model and study competition and cooperative behavior; and engineers, who used games in computer sciences, telecommunications, and other areas. The contents of this volume are primarily based on selected presentation made at the 8th International Symposium of Dynamic Games and Applications, held in Chateau Vaalsbroek, Maastricht, the Netherlands, July 5-8, 1998; this conference took place under the auspices of the International Society of Dynamic Games (ISDG), established in 1990. The conference has been cosponsored by the Control Systems Society of the IEEE, IFAC (International Federation of Automatic Con trol), INRIA (Institute National de Recherche en Informatique et Automatique), and the University of Maastricht. One ofthe activities of the ISDG is the publica tion of the Annals. Every paper that appears in this volume has passed through a stringent reviewing process, as is the case with publications for archival journals."
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 -8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 -13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 -19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934-2013) of the Universite de Montreal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.
This contributed volume focuses on various important areas of mathematics in which approximation methods play an essential role. It features cutting-edge research on a wide spectrum of analytic inequalities with emphasis on differential and integral inequalities in the spirit of functional analysis, operator theory, nonlinear analysis, variational calculus, featuring a plethora of applications, making this work a valuable resource. The reader will be exposed to convexity theory, polynomial inequalities, extremal problems, prediction theory, fixed point theory for operators, PDEs, fractional integral inequalities, multidimensional numerical integration, Gauss-Jacobi and Hermite-Hadamard type inequalities, Hilbert-type inequalities, and Ulam's stability of functional equations. Contributions have been written by eminent researchers, providing up-to-date information and several results which may be useful to a wide readership including graduate students and researchers working in mathematics, physics, economics, operational research, and their interconnections.
Explores the history, business, and technology of video games, including social, political, and economic motivations Facilitates learning with clear objectives, key terms, illustrative timelines, color images, tables and graphs Highlights the technical specifications and key titles of all major game consoles, handhelds, personal computers, and mobile platforms Reinforces material with market summaries, reviews of breakthroughs and trends, as well as end-of-chapter activities and quizzes New content in every chapter, from the PC-98, MSX, Amstrad, and ZX Spectrum to expanded coverage on mobile gaming, virtual reality, Steam Deck, Nintendo Switch, Xbox Series X|S, and PlayStation 5
This successful book provides in its second edition an interactive and illustrative guide from two-dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algorithms are touched. All concepts and ideas are outlined in a clear cut manner with graphically depicted plausibility arguments and a little elementary mathematics.The major topics are extensively outlined with exploratory examples and applications. The primary goal is to be as illustrative as possible without hiding problems and pitfalls but to address them. The character of an illustrative cookbook is complemented with specific sections that address more fundamental questions like the relation between machine learning and human intelligence.All topics are completely demonstrated with the computing platform Mathematica and the Computational Intelligence Packages (CIP), a high-level function library developed with Mathematica's programming language on top of Mathematica's algorithms. CIP is open-source and the detailed code used throughout the book is freely accessible.The target readerships are students of (computer) science and engineering as well as scientific practitioners in industry and academia who deserve an illustrative introduction. Readers with programming skills may easily port or customize the provided code. "'From curve fitting to machine learning' is ... a useful book. ... It contains the basic formulas of curve fitting and related subjects and throws in, what is missing in so many books, the code to reproduce the results.All in all this is an interesting and useful book both for novice as well as expert readers. For the novice it is a good introductory book and the expert will appreciate the many examples and working code". Leslie A. Piegl (Review of the first edition, 2012).
Sustainable development within urban and rural areas, transportation systems, logistics, supply chain management, urban health, social services, and architectural design are taken into consideration in the cohesive network models provided in this book. The ideas, methods, and models presented consider city landscapes and quality of life conditions based on mathematical network models and optimization. Interdisciplinary Works from prominent researchers in mathematical modeling, optimization, architecture, engineering, and physics are featured in this volume to promote health and well-being through design. Specific topics include: - Current technology that form the basis of future living in smart cities - Interdisciplinary design and networking of large-scale urban systems - Network communication and route traffic optimization - Carbon dioxide emission reduction - Closed-loop logistics chain management and operation - Modeling the effect urban environments on aging - Health care infrastructure - Urban water system management - Architectural design optimization Graduate students and researchers actively involved in architecture, engineering, building physics, logistics, supply chain management, and mathematical optimization will find the interdisciplinary work presented both informative and inspiring for further research.
This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read at Oxford Scholarship Online and offered as a free PDF download from OUP and selected open access locations. The formation of coalitions to achieve both collaborative and competitive goals is a phenomenon we see all around us. The list is long and varied: production cartels, political lobbies, customs unions, environmental coalitions, and ethnic alliances are just a few everyday instances. Drawing upon and extending his inaugural Lipsey Lectures at the University of Essex, Debraj Ray looks at coalition formation from the perspective of game theory. How are agreements determined? Which coalitions will form? And are such agreements invariably efficient from a social perspective? Ray brings together developments in both cooperative and noncooperative game theory to study the analytics of coalition formation and binding agreements. This book concentrates on pure theory, but discusses several potential applications, such as oligopoly and the provision of public goods.
The H control has been one of the important robust control approaches since the 1980s. This book extends the area to nonlinear stochastic H2/H control, and studies more complex and practically useful mixed H2/H controller synthesis rather than the pure H control. Different from the commonly used convex optimization method, this book applies the Nash game approach to give necessary and sufficient conditions for the existence and uniqueness of the mixed H2/H control. Researchers will benefit from our detailed exposition of the stochastic mixed H2/H control theory, while practitioners can apply our efficient algorithms to address their practical problems.
Nature-Inspired Optimization Algorithms, a comprehensive work on the most popular optimization algorithms based on nature, starts with an overview of optimization going from the classical to the latest swarm intelligence algorithm. Nature has a rich abundance of flora and fauna that inspired the development of optimization techniques, providing us with simple solutions to complex problems in an effective and adaptive manner. The study of the intelligent survival strategies of animals, birds, and insects in a hostile and ever-changing environment has led to the development of techniques emulating their behavior. This book is a lucid description of fifteen important existing optimization algorithms based on swarm intelligence and superior in performance. It is a valuable resource for engineers, researchers, faculty, and students who are devising optimum solutions to any type of problem ranging from computer science to economics and covering diverse areas that require maximizing output and minimizing resources. This is the crux of all optimization algorithms. Features: Detailed description of the algorithms along with pseudocode and flowchart Easy translation to program code that is also readily available in Mathworks website for some of the algorithms Simple examples demonstrating the optimization strategies are provided to enhance understanding Standard applications and benchmark datasets for testing and validating the algorithms are included This book is a reference for undergraduate and post-graduate students. It will be useful to faculty members teaching optimization. It is also a comprehensive guide for researchers who are looking for optimizing resources in attaining the best solution to a problem. The nature-inspired optimization algorithms are unconventional, and this makes them more efficient than their traditional counterparts.
Optimization from Human Genes to Cutting Edge Technologies The challenges faced by industry today are so complex that they can only be solved through the help and participation of optimization ex perts. For example, many industries in e-commerce, finance, medicine, and engineering, face several computational challenges due to the mas sive data sets that arise in their applications. Some of the challenges include, extended memory algorithms and data structures, new program ming environments, software systems, cryptographic protocols, storage devices, data compression, mathematical and statistical methods for knowledge mining, and information visualization. With advances in computer and information systems technologies, and many interdisci plinary efforts, many of the "data avalanche challenges" are beginning to be addressed. Optimization is the most crucial component in these efforts. Nowadays, the main task of optimization is to investigate the cutting edge frontiers of these technologies and systems and find the best solutions for their realization. Optimization principles are evident in nature (the perfect optimizer) and appeared early in human history. Did you ever watch how a spider catches a fly or a mosquito? Usually a spider hides at the edge of its net. When a fly or a mosquito hits the net the spider will pick up each line in the net to choose the tense line? Some biologists explain that the line gives the shortest path from the spider to its prey." |
You may like...
Persuasive Gaming in Context
Teresa La Hera, Jeroen Jansz, …
Hardcover
R3,499
Discovery Miles 34 990
Linear Integer Programming - Theory…
Elias Munapo, Santosh Kumar
Hardcover
R3,775
Discovery Miles 37 750
Handbook of Experimental Game Theory
C. M. Capra, Rachel T. A. Croson, …
Hardcover
R7,224
Discovery Miles 72 240
The Oxford Handbook of the Economics of…
Yann Bramoulle, Andrea Galeotti, …
Hardcover
R5,455
Discovery Miles 54 550
|