Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Optimization
This book demonstrates what kind of problems, originating in a management accounting setting, may be solved with game theoretic models. Game theory has experienced growing interest and numerous applications in the field of management accounting. The main focus traditionally has been on the field of non-cooperative behaviour, but the area of cooperative game theory has developed rapidly and has received increasing attention. Intensive research, in combination with the changing culture of publishing, has produced a nearly unmanageable number of publications in the areas concerned. Therefore, one main purpose of this volume is providing an intensive analysis of the intersection of these areas. In addition, the book strengthens the relationship between the theory and the practical applications and it illustrates the two-sided relationship between game theory and management accounting: new game theoretic models offer new fields of applications and these applications raise new questions for the theory.
The theory of dynamic games is very rich in nature and very much alive If the reader does not already agree with this statement, I hope he/she will surely do so after having consulted the contents of the current volume. The activities which fall under the heading of 'dynamic games' cannot easily be put into one scientific discipline. On the theoretical side one deals with differential games, difference games (the underlying models are described by differential, respec tively difference equations) and games based on Markov chains, with determin istic and stochastic games, zero-sum and nonzero-sum games, two-player and many-player games - all under various forms of equilibria. On the practical side, one sees applications to economics (stimulated by the recent Nobel prize for economics which went to three prominent scientists in game theory), biology, management science, and engineering. The contents of this volume are primarily based on selected presentations made at the Sixth International Symposium on Dynamic Games and Applica tions, held in St Jovite, Quebec, Canada, 13-15 July 1994. Every paper that appears in this volume has passed through a stringent reviewing process, as is the case with publications for archival technical journals. This conference, as well as its predecessor which was held in Grimentz, 1992, took place under the auspices of the International Society of Dynamic Games (ISDG), established in 1990. One of the activities of the ISDG is the publication of these Annals. The contributions in this volume have been grouped around five themes."
This textbook provides a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes it suitable for use in one or two semesters of an advanced undergraduate course or a first-year graduate course. Each half of the book contains a full semester's worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable as a reference work for practitioners in the field. In this second edition the authors have added sections on recent innovations, techniques, and methodologies.
Mathematical methods and theories with interdisciplinary applications are presented in this book. The eighteen contributions presented in this Work have been written by eminent scientists; a few papers are based on talks which took place at the International Conference at the Hellenic Artillery School in May 2015. Each paper evaluates possible solutions to long-standing problems such as the solvability of the direct electromagnetic scattering problem, geometric approaches to cyber security, ellipsoid targeting with overlap, non-equilibrium solutions of dynamic networks, measuring ballistic dispersion, elliptic regularity theory for the numerical solution of variational problems, approximation theory for polynomials on the real line and the unit circle, complementarity and variational inequalities in electronics, new two-slope parameterized achievement scalarizing functions for nonlinear multiobjective optimization, and strong and weak convexity of closed sets in a Hilbert space. Graduate students, scientists, engineers and researchers in pure and applied mathematical sciences, operations research, engineering, and cyber security will find the interdisciplinary scientific perspectives useful to their overall understanding and further research.
This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author's lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.
Many systems architecture optimization problems are characterized by a variable number of optimization variables. Many classical optimization algorithms are not suitable for such problems. The book presents recently developed optimization concepts that are designed to solve such problems. These new concepts are implemented using genetic algorithms and differential evolution. The examples and applications presented show the effectiveness of the use of these new algorithms in optimizing systems architectures. The book focuses on systems architecture optimization. It covers new algorithms and its applications, besides reviewing fundamental mathematical concepts and classical optimization methods. It also provides detailed modeling of sample engineering problems. The book is suitable for graduate engineering students and engineers. The second part of the book includes numerical examples on classical optimization algorithms, which are useful for undergraduate engineering students. While focusing on the algorithms and their implementation, the applications in this book cover the space trajectory optimization problem, the optimization of earth orbiting satellites orbits, and the optimization of the wave energy converter dynamic system: architecture and control. These applications are illustrated in the starting of the book, and are used as case studies in later chapters for the optimization methods presented in the book.
This book investigates Reliability-based Multidisciplinary Design Optimization (RBMDO) theory and its application in the design of deep manned submersibles (DMSs). Multidisciplinary Design Optimization (MDO) is an effective design method for large engineering systems like aircraft, warships, and satellites, which require designers and engineers from various disciplines to cooperate with each other. MDO can be used to handle the conflicts that arise between these disciplines, and focuses on the optimal design of the system as a whole. However, it can also push designs to the brink of failure. In order to keep the system balanced, Reliability-based Design (RBD) must be incorporated into MDO. Consequently, new algorithms and methods have to be developed for RBMDO theory. This book provides an essential overview of MDO, RBD, and RBMDO and subsequently introduces key algorithms and methods by means of case analyses. In closing, it introduces readers to the design of DMSs and applies RBMDO methods to the design of the manned hull and the general concept design. The book is intended for all students and researchers who are interested in system design theory, and for engineers working on large, complex engineering systems.
There has been an increase in attention toward systems involving large numbers of small players, giving rise to the theory of mean field games, mean field type control and nonlinear Markov games. Exhibiting various real world problems involving major and minor agents, this book presents a systematic continuous-space approximation approach for mean-field interacting agents models and mean-field games models. After describing Markov-chain methodology and a modeling of mean-field interacting systems, the text presents various structural conditions on the chain to yield respective socio-economic models, focusing on migration models via binary interactions. The specific applications are wide-ranging - including inspection and corruption, cyber-security, counterterrorism, coalition building and network growth, minority games, and investment policies and optimal allocation - making this book relevant to a wide audience of applied mathematicians interested in operations research, computer science, national security, economics, and finance.
This book describes the fundamental and theoretical concepts of optimization algorithms in a systematic manner, along with their potential applications and implementation strategies in mining engineering. It explains basics of systems engineering, linear programming, and integer linear programming, transportation and assignment algorithms, network analysis, dynamic programming, queuing theory and their applications to mine systems. Reliability analysis of mine systems, inventory management in mines, and applications of non-linear optimization in mines are discussed as well. All the optimization algorithms are explained with suitable examples and numerical problems in each of the chapters. Features include: * Integrates operations research, reliability, and novel computerized technologies in single volume, with a modern vision of continuous improvement of mining systems. * Systematically reviews optimization methods and algorithms applied to mining systems including reliability analysis. * Gives out software-based solutions such as MATLAB (R), AMPL, LINDO for the optimization problems. * All discussed algorithms are supported by examples in each chapter. * Includes case studies for performance improvement of the mine systems. This book is aimed primarily at professionals, graduate students, and researchers in mining engineering.
This book provides a postgraduate audience the keys they need to understand and further develop a set of tools for the efficient computation of lower bounds and valid inequalities in integer programs and combinatorial optimization problems. After discussing the classical approaches described in the literature, the book addresses how to extend these tools to other non-standard formulations that may be applied to a broad set of applications. Examples are provided to illustrate the underlying concepts and to pave the way for future contributions.
DEA is computational at its core and this book will be one of several books that we will look to publish on the computational aspects of DEA. This book by Zhu and Cook will deal with the micro aspects of handling and modeling data issues in modeling DEA problems. DEA's use has grown with its capability of dealing with complex service industry and the public service domain types of problems that require modeling both qualitative and quantitative data. This will be a handbook treatment dealing with specific data problems including the following: (1) imprecise data, (2) inaccurate data, (3) missing data, (4) qualitative data, (5) outliers, (6) undesirable outputs, (7) quality data, (8) statistical analysis, (9) software and other data aspects of modeling complex DEA problems. In addition, the book will demonstrate how to visualize DEA results when the data is more than 3-dimensional, and how to identify efficiency units quickly and accurately.
Reviews the literature of the Moth-Flame Optimization algorithm; Provides an in-depth analysis of equations, mathematical models, and mechanisms of the Moth-Flame Optimization algorithm; Proposes different variants of the Moth-Flame Optimization algorithm to solve binary, multi-objective, noisy, dynamic, and combinatorial optimization problems; Demonstrates how to design, develop, and test different hybrids of Moth-Flame Optimization algorithm; Introduces several applications areas of the Moth-Flame Optimization algorithm focusing in sustainability.
The contributions included in the volume are drawn from presentations at ODS2019 - International Conference on Optimization and Decision Science, which was the 49th annual meeting of the Italian Operations Research Society (AIRO) held at Genoa, Italy, on 4-7 September 2019. This book presents very recent results in the field of Optimization and Decision Science. While the book is addressed primarily to the Operations Research (OR) community, the interdisciplinary contents ensure that it will also be of very high interest for scholars and researchers from many scientific disciplines, including computer sciences, economics, mathematics, and engineering. Operations Research is known as the discipline of optimization applied to real-world problems and to complex decision-making fields. The focus is on mathematical and quantitative methods aimed at determining optimal or near-optimal solutions in acceptable computation times. This volume not only presents theoretical results but also covers real industrial applications, making it interesting for practitioners facing decision problems in logistics, manufacturing production, and services. Readers will accordingly find innovative ideas from both a methodological and an applied perspective.
Does game theory ? the mathematical theory of strategic interaction ? provide genuine explanations of human behaviour? Can game theory be used in economic consultancy or other normative contexts? Explaining Games: The Epistemic Programme in Game Theory ? the first monograph on the philosophy of game theory ? is a bold attempt to combine insights from epistemic logic and the philosophy of science to investigate the applicability of game theory in such fields as economics, philosophy and strategic consultancy. De Bruin proves new mathematical theorems about the beliefs, desires and rationality principles of individual human beings, and he explores in detail the logical form of game theory as it is used in explanatory and normative contexts. He argues that game theory reduces to rational choice theory if used as an explanatory device, and that game theory is nonsensical if used as a normative device. A provocative account of the history of game theory reveals that this is not bad news for all of game theory, though. Two central research programmes in game theory tried to find the ultimate characterisation of strategic interaction between rational agents. Yet, while the Nash Equilibrium Refinement Programme has done badly thanks to such research habits as overmathematisation, model-tinkering and introversion, the Epistemic Programme, De Bruin argues, has been rather successful in achieving this aim.
Mathematica by Example, Sixth Edition is an essential resource for the Mathematica user, providing step-by-step instructions on achieving results from this powerful software tool. The book fully accounts for the changes to functionality and visualization capabilities and accomodates the full array of new extensions in the types of data and problems that Mathematica can immediately handle, including cloud services and systems, geographic and geometric computation, dynamic visualization, interactive applications and other improvements. It is an ideal text for scientific students, researchers, and aspiring programmers seeking further understanding of Mathematica. Written by seasoned practitioners with a view to practical implementation and problem-solving, the book's pedagogy is delivered clearly and without jargon using representative biological, physical and engineering problems. Code is provided on an ancillary website to support the use of Mathematica across diverse applications and subject areas.
Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the social and political problems of their times. What we have sought to document is mathematics' central position in the culture of our day. Space has been made not only for the great mathematicians but also for literary texts, including contributions by two apparent interlopers, Robert Musil and Raymond Queneau, for whom mathematical concepts represented a valuable tool for resolving the struggle between 'soul and precision.'
The solitaire game "The Tower of Hanoi" was invented in the 19th century by the French number theorist Edouard Lucas. The book presents its mathematical theory and offers a survey of the historical development from predecessors up to recent research. In addition to long-standing myths, it provides a detailed overview of the essential mathematical facts with complete proofs, and also includes unpublished material, e.g., on some captivating integer sequences. The main objects of research today are the so-called Hanoi graphs and the related Sierpinski graphs. Acknowledging the great popularity of the topic in computer science, algorithms, together with their correctness proofs, form an essential part of the book. In view of the most important practical applications, namely in physics, network theory and cognitive (neuro)psychology, the book also addresses other structures related to the Tower of Hanoi and its variants. The updated second edition includes, for the first time in English, the breakthrough reached with the solution of the "The Reve's Puzzle" in 2014. This is a special case of the famed Frame-Stewart conjecture which is still open after more than 75 years. Enriched with elaborate illustrations, connections to other puzzles and challenges for the reader in the form of (solved) exercises as well as problems for further exploration, this book is enjoyable reading for students, educators, game enthusiasts and researchers alike. Excerpts from reviews of the first edition: "The book is an unusual, but very welcome, form of mathematical writing: recreational mathematics taken seriously and serious mathematics treated historically. I don't hesitate to recommend this book to students, professional research mathematicians, teachers, and to readers of popular mathematics who enjoy more technical expository detail." Chris Sangwin, The Mathematical Intelligencer 37(4) (2015) 87f. "The book demonstrates that the Tower of Hanoi has a very rich mathematical structure, and as soon as we tweak the parameters we surprisingly quickly find ourselves in the realm of open problems." Laszlo Kozma, ACM SIGACT News 45(3) (2014) 34ff. "Each time I open the book I discover a renewed interest in the Tower of Hanoi. I am sure that this will be the case for all readers." Jean-Paul Allouche, Newsletter of the European Mathematical Society 93 (2014) 56.
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsible for the "hardness" of the scheduling problem. Chapters 6, 7, and 8 are dedicated to the resolution of several scheduling problems. These examples illustrate the use and the practical efficiency of the constraint propagation methods of the previous chapters. They also show that besides constraint propagation, the exploration of the search space must be carefully designed, taking into account specific properties of the considered problem (e.g., dominance relations, symmetries, possible use of decomposition rules). Chapter 9 mentions various extensions of the model and presents promising research directions.
This book presents a panorama about the recent progress of industrial mathematics from the point of view of both industrials and researchers. The chapters correspond to a selection of the contributions presented in the "Industry Day" and in the Minisymposium "EU - MATHS - IN: Success Stories of Applications of Mathematics to Industry" organized in the framework of the International Conference ICIAM 2019 held in Valencia (Spain) on July 15-19, 2019. In the Industry Day, included for the first time in this series of Conferences, representatives of companies from different countries and several sectors presented their view about the benefits regarding the usage of mathematical tools and/or collaboration with mathematicians. The contributions of this special session were addressed to industry people. Minisymposium contributions detailed some collaborations between mathematicians and industrials that led to real benefits in several European companies. All the speakers were affiliated in some of the European National Networks that constitute the European Service Network of Mathematics for Industry and Innovation (EU-MATHS-IN).
This volume contains the edited texts of the lectures presented at the Workshop on Nonlinear Optimization held in Erice, Sicily, at the "G. Stampacchia" School of Mathematics of the "E. Majorana" Centre for Scientific Culture, June 23 -July 2, 1998. In the tradition of these meetings, the main purpose was to review and discuss recent advances and promising research trends concerning theory, algorithms and innovative applications in the field of Nonlinear Optimization, and of related topics such as Convex Optimization, Nonsmooth Optimization, Variational Inequalities and Complementarity Problems. The meeting was attended by 83 people from 21 countries. Besides the lectures, several formal and informal discussions took place. The result was a wide and deep knowledge of the present research tendencies in the field. We wish to express our appreciation for the active contribution of all the par ticipants in the meeting. Our gratitude is due to the Ettore Majorana Centre in Erice, which offered its facilities and rewarding environment: its staff was certainly instrumental for the success of the meeting. Our gratitude is also due to Francisco Facchinei and Massimo Roma for the effort and time devoted as members of the Organising Committee. We are indebted to the Italian National Research Council, and in particular to the Group on Functional Analysis and its Applications and to the Committees on Engineering Sciences and on Information Sciences and Technolo gies for their financial support. Finally, we address our thanks to Kluwer Academic Publishers for having offered to publish this volume."
This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO) workshop held in September 2015 in Tijuana, Mexico. The development of powerful search and optimization techniques is of great importance in today's world that requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together people from these and related fields to discuss, compare and merge their complimentary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. Through this effort, we believe that the NEO can promote the development of new techniques that are applicable to a broader class of problems. Moreover, NEO fosters the understanding and adequate treatment of real-world problems particularly in emerging fields that affect us all such as health care, smart cities, big data, among many others. The extended papers the NEO 2015 that comprise this book make a contribution to this goal.
Fundamentals and important results of vector optimization in a general setting are presented in this book. The theory developed includes scalarization, existence theorems, a generalized Lagrange multiplier rule and duality results. Applications to vector approximation, cooperative game theory and multiobjective optimization are described. The theory is extended to set optimization with particular emphasis on contingent epiderivatives, subgradients and optimality conditions. Background material of convex analysis being necessary is concisely summarized at the beginning. This second edition contains new parts on the adaptive Eichfelder-Polak method, a concrete application to magnetic resonance systems in medical engineering and additional remarks on the contribution of F.Y. Edgeworth and V. Pareto. The bibliography is updated and includes more recent important publications.
The chapters of this Handbook volume covers nine main topics that
are representative of recent
This book discusses an important area of numerical optimization, called interior-point method. This topic has been popular since the 1980s when people gradually realized that all simplex algorithms were not convergent in polynomial time and many interior-point algorithms could be proved to converge in polynomial time. However, for a long time, there was a noticeable gap between theoretical polynomial bounds of the interior-point algorithms and efficiency of these algorithms. Strategies that were important to the computational efficiency became barriers in the proof of good polynomial bounds. The more the strategies were used in algorithms, the worse the polynomial bounds became. To further exacerbate the problem, Mehrotra's predictor-corrector (MPC) algorithm (the most popular and efficient interior-point algorithm until recently) uses all good strategies and fails to prove the convergence. Therefore, MPC does not have polynomiality, a critical issue with the simplex method. This book discusses recent developments that resolves the dilemma. It has three major parts. The first, including Chapters 1, 2, 3, and 4, presents some of the most important algorithms during the development of the interior-point method around the 1990s, most of them are widely known. The main purpose of this part is to explain the dilemma described above by analyzing these algorithms' polynomial bounds and summarizing the computational experience associated with them. The second part, including Chapters 5, 6, 7, and 8, describes how to solve the dilemma step-by-step using arc-search techniques. At the end of this part, a very efficient algorithm with the lowest polynomial bound is presented. The last part, including Chapters 9, 10, 11, and 12, extends arc-search techniques to some more general problems, such as convex quadratic programming, linear complementarity problem, and semi-definite programming.
This book details cutting-edge research into human-like driving technology, utilising game theory to better suit a human and machine hybrid driving environment. Covering feature identification and modelling of human driving behaviours, the book explains how to design an algorithm for decision making and control of autonomous vehicles in complex scenarios. Beginning with a review of current research in the field, the book uses this as a springboard from which to present a new theory of human-like driving framework for autonomous vehicles. Chapters cover system models of decision making and control, driving safety, riding comfort and travel efficiency. Throughout the book, game theory is applied to human-like decision making, enabling the autonomous vehicle and the human driver interaction to be modelled using noncooperative game theory approach. It also uses game theory to model collaborative decision making between connected autonomous vehicles. This framework enables human-like decision making and control of autonomous vehicles, which leads to safer and more efficient driving in complicated traffic scenarios. The book will be of interest to students and professionals alike, in the field of automotive engineering, computer engineering and control engineering. |
You may like...
Process Plant Operating Procedures…
Chuei-Tin Chang, Hao-Yeh Lee, …
Hardcover
R4,277
Discovery Miles 42 770
Data-Driven Science and Engineering…
Steven L. Brunton, J. Nathan Kutz
Hardcover
Game Theory - Breakthroughs in Research…
Information Resources Management Association
Hardcover
R8,677
Discovery Miles 86 770
|