![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization
This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Krakow, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable. The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Gunter Leugering, Jan Sokolowski and Antoni Zochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.
This Palgrave Pivot presents tournament design mainly within the axioms of incentive compatibility and fairness. It illustrates the advantages of an axiomatic approach through various examples, including several FIFA and UEFA tournaments, and uses theoretical tools and simulation methodology in its analysis. Chapter 1 discusses scoring systems of championships with multiple competitions, ranking in Swiss-system tournaments, and tie-breaking rules in round-robin leagues. It is followed by a thorough critical analysis of the current and previous FIFA World Rankings. The broad focus is substantially narrowed in Chapter 2, which turns to the topic of incentive (in)compatibility in multiple qualifiers. It is revealed that UEFA has faced at least three times recently this problem in the qualification to the UEFA Europa League, qualification to the UEFA Champions League, and the draw of the UEFA Champions League groups. Analogously, Chapter 3 discusses incentive (in)compatibility when there is only one group-based tournament but the complex progression rules to the subsequent stage can be designed poorly. Our examples include the qualifying tournaments of recent FIFA World Cups and UEFA European Championships. Chapter 4 moves to the problem of penalty shootout rules in soccer, where the fairness and complexity of some alternative mechanisms from the literature are evaluated. Fairness remains the central issue in Chapter 5, which presents the challenges of designing a tournament with 24 teams if the number of teams per group cannot exceed four. As expected, there is no perfect solution, and both FIFA and UEFA have introduced a reform in this format recently. Chapter 6 deals with the qualification for the 2020 UEFA European Football Championship. Its tournament design is perhaps the most complicated one that has ever been implemented in the real-world and suffers from serious shortcomings.
There are thousands of books relating to poker, blackjack, roulette and baccarat, including strategy guides, statistical analysis, psychological studies, and much more. However, there are no books on Pell, Rouleno, Street Dice, and many other games that have had a short life in casinos! While this is understandable - most casino gamblers have not heard of these games, and no one is currently playing them - their absence from published works means that some interesting mathematics and gaming history are at risk of being lost forever. Table games other than baccarat, blackjack, craps, and roulette are called carnival games, as a nod to their origin in actual traveling or seasonal carnivals. Mathematics of Casino Carnival Games is a focused look at these games and the mathematics at their foundation. Features * Exercises, with solutions, are included for readers who wish to practice the ideas presented * Suitable for a general audience with an interest in the mathematics of gambling and games * Goes beyond providing practical 'tips' for gamblers, and explores the mathematical principles that underpin gambling games
This carefully curated volume presents an in-depth, state-of-the-art discussion on many applications of Synthetic Aperture Radar (SAR). Integrating interdisciplinary sciences, the book features novel ideas, quantitative methods, and research results, promising to advance computational practices and technologies within the academic and industrial communities. SAR applications employ diverse and often complex computational methods rooted in machine learning, estimation, statistical learning, inversion models, and empirical models. Current and emerging applications of SAR data for earth observation, object detection and recognition, change detection, navigation, and interference mitigation are highlighted. Cutting edge methods, with particular emphasis on machine learning, are included. Contemporary deep learning models in object detection and recognition in SAR imagery with corresponding feature extraction and training schemes are considered. State-of-the-art neural network architectures in SAR-aided navigation are compared and discussed further. Advanced empirical and machine learning models in retrieving land and ocean information - wind, wave, soil conditions, among others, are also included.
This book systematically discusses nonlinear interval optimization design theory and methods. Firstly, adopting a mathematical programming theory perspective, it develops an innovative mathematical transformation model to deal with general nonlinear interval uncertain optimization problems, which is able to equivalently convert complex interval uncertain optimization problems to simple deterministic optimization problems. This model is then used as the basis for various interval uncertain optimization algorithms for engineering applications, which address the low efficiency caused by double-layer nested optimization. Further, the book extends the nonlinear interval optimization theory to design problems associated with multiple optimization objectives, multiple disciplines, and parameter dependence, and establishes the corresponding interval optimization models and solution algorithms. Lastly, it uses the proposed interval uncertain optimization models and methods to deal with practical problems in mechanical engineering and related fields, demonstrating the effectiveness of the models and methods.
Two approaches are known for solving large-scale unconstrained optimization problems-the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampere equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton-Jacobi-Bellman equations Improving policies for Hamilton-Jacobi-Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton-Jacobi-Bellman equations based on diagonally implicit symplectic Runge-Kutta methods Numerical solution of the simple Monge-Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton-Jacobi-Bellman equation within the European Union Emission Trading Scheme
Predictive Control is aimed at students wishing to learn predictive control, as well as teachers, engineers and technicians of the profession. The book proposes a simple predictive controller where the control laws are given in clear text that requires no calculations. Adjustment, reduced to one or two parameters, is particularly easy, by means of charts, thus allowing the operator to choose the horizon according to the desired performances. Implementation is discussed in detail in two forms: RS or RST controller in z-1, and pseudo-code realization algorithms for a complete program (model and controller). The book is simple and practical, with the aim of the industrial implementation of many processes: Broida models, Strejc, integrators, dual integrators, with delay, or with inverse response. All settings are abundantly illustrated with response curves.
The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.
This work presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems, in order to optimize some measure of their performance. Started in the 60's under the pressure of the "space race" between the US and the former USSR, the field now has a far wider scope, and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and management of financial markets. These emerging applications require more and more efficient numerical methods for their solution, a very difficult task due the huge number of variables. The chapters of this volume give an up-to-date presentation of several recent methods in this area including fast dynamic programming algorithms, model predictive control and max-plus techniques. This book is addressed to researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications.
This book examines how China's decentralization process has affected and will affect the country's macroeconomic performance and the functioning of the market. With an innovative application of game theory, the author develops an analytical framework that can explain the behaviour of the central and local governments under alternative institutional environments. The study also suggests how to establish desirable rules of games in China's political and economic institutions through appropriate reforms.
Optimization has long been a source of both inspiration and applications for geometers, and conversely, discrete and convex geometry have provided the foundations for many optimization techniques, leading to a rich interplay between these subjects. The purpose of the Workshop on Discrete Geometry, the Conference on Discrete Geometry and Optimization, and the Workshop on Optimization, held in September 2011 at the Fields Institute, Toronto, was to further stimulate the interaction between geometers and optimizers. This volume reflects the interplay between these areas. The inspiring Fejes Toth Lecture Series, delivered by Thomas Hales of the University of Pittsburgh, exemplified this approach. While these fields have recently witnessed a lot of activity and successes, many questions remain open. For example, Fields medalist Stephen Smale stated that the question of the existence of a strongly polynomial time algorithm for linear optimization is one of the most important unsolved problems at the beginning of the 21st century. The broad range of topics covered in this volume demonstrates the many recent and fruitful connections between different approaches, and features novel results and state-of-the-art surveys as well as open problems. "
In a series of conversational essays, this textbook discusses the manner in which economic thought addresses a broad array of everyday issues beyond classical textbook treatments. In the spirit of popular economics books, the author uncovers economic issues and solutions from individuals, businesses, society, and the country as a whole in a decidedly non-technical and relatable manner. Should the federal government mandate use of child safety seats on commercial airlines? Can genetic information substitute for a college degree? The contents of this book touch on many of these contemporary topics in an accessible way. Addressing undergraduate and graduate students, as well as scholars in different fields of economics, this book is a must-read for everybody interested in a better understanding of economic thought.
Systems with mechanical degrees of freedom containing unstable objects are analysed in this monograph and algorithms for their control are developed, discussed, and numerically tested. This is achieved by identifying unstable modes of motion and using all available resources to suppress them. By using this approach the region of states from which a stable regime can be reached is maximised. The systems discussed in this book are models for pendula and vehicles and find applications in mechatronics, robotics as well as in mechanical and automotive engineering.
This book is a detailed introduction to selective maintenance and updates readers on recent advances in this field, emphasizing mathematical formulation and optimization techniques. The book is useful for reliability engineers and managers engaged in the practice of reliability engineering and maintenance management. It also provides references that will lead to further studies at the end of each chapter. This book is a reference for researchers in reliability and maintenance and can be used as an advanced text for students.
This book provides a comprehensive study of asymmetric territorial conflict combining game theory, statistical empirical analysis and historiographic analysis. It proposes a model to explain the dynamics of territorial conflict between rivals with a wide disparity in capabilities between them. Using the Israeli-Palestinian conflict as a case study and testing the model on a database of almost four hundred territorial conflicts, Resnick argues that changes in 'patience' - explained by parallel evolutionary processes occurring in the respectively strong and weak societies - underlie the changing behaviour witnessed in such rivalries. Located within the general context of the interplay between material constraints and ideas, the theoretical significance of this model goes beyond the context of territorial conflict and can be seen to provide an explanation for the ideational aspects of power transitions and change in world politics.This book constitutes a significant advance in the literature on territorial conflict, which has increasingly come to be recognized as a key field of enquiry in the discipline of conflict studies and international relations scholarship in general.
This book presents a structured approach to formulate, model, and solve mathematical optimization problems for a wide range of real world situations. Among the problems covered are production, distribution and supply chain planning, scheduling, vehicle routing, as well as cutting stock, packing, and nesting. The optimization techniques used to solve the problems are primarily linear, mixed-integer linear, nonlinear, and mixed integer nonlinear programming. The book also covers important considerations for solving real-world optimization problems, such as dealing with valid inequalities and symmetry during the modeling phase, but also data interfacing and visualization of results in a more and more digitized world. The broad range of ideas and approaches presented helps the reader to learn how to model a variety of problems from process industry, paper and metals industry, the energy sector, and logistics using mathematical optimization techniques.
This book focuses on a development of optimal, flexible, and efficient models and algorithms for cell formation in group technology. Its main aim is to provide a reliable tool that can be used by managers and engineers to design manufacturing cells based on their own preferences and constraints imposed by a particular manufacturing system. This tool could potentially lower production costs by minimizing other costs in a number of areas, thereby increasing profit in a manufacturing system. In the volume, the cell formation problem is considered in a systematic and formalized way, and several models are proposed, both heuristic and exact. The models are based on general clustering problems, and are flexible enough to allow for various objectives and constraints. The authors also provide results of numerical experiments involving both artificial data from academic papers in the field and real manufacturing data to certify the appropriateness of the models proposed. The book was intended to suit the broadest possible audience, and thus all algorithmic details are given in a detailed description with multiple numerical examples and informal explanations are provided for the theoretical results. In addition to managers and industrial engineers, this book is intended for academic researchers and students. It will also be attractive to many theoreticians, since it addresses many open problems in computer science and bioinformatics.
Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.
It is a common complaint against moral philosophers that their abstract theorising bears little relation to the practical problems of everyday life. Professor Braithwaite believes that this criticism need not be inevitable. With the help of the Theory of Games he shows how arbitration is possible between two neighbours, a jazz trumpeter and a classical pianist, whose performances are a source of mutual discord. The solution of the problem in the lecture is geometrical, and is based on the formal analogy between the logic of the situation and the geometry of a parabola. But an appendix provides the alternative algebraic treatment of a general two-person collaboration situation.
This book explores mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. The book gathers 81 contributions submitted to the 20th European Conference on Mathematics for Industry, ECMI 2018, which was held in Budapest, Hungary in June 2018. The application areas include: Applied Physics, Biology and Medicine, Cybersecurity, Data Science, Economics, Finance and Insurance, Energy, Production Systems, Social Challenges, and Vehicles and Transportation. In turn, the mathematical technologies discussed include: Combinatorial Optimization, Cooperative Games, Delay Differential Equations, Finite Elements, Hamilton-Jacobi Equations, Impulsive Control, Information Theory and Statistics, Inverse Problems, Machine Learning, Point Processes, Reaction-Diffusion Equations, Risk Processes, Scheduling Theory, Semidefinite Programming, Stochastic Approximation, Spatial Processes, System Identification, and Wavelets. The goal of the European Consortium for Mathematics in Industry (ECMI) conference series is to promote interaction between academia and industry, leading to innovations in both fields. These events have attracted leading experts from business, science and academia, and have promoted the application of novel mathematical technologies to industry. They have also encouraged industrial sectors to share challenging problems where mathematicians can provide fresh insights and perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.
Evolutionary algorithms are very powerful techniques used to find solutions to real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run.
'Deb's book is complete, eminently readable, and the coverage is scholarly and thorough. It is my pleasure and duty to urge you to buy this book, read it, use it and enjoy it' - David E. Goldberg, University of Illinois at Urbana-Champaign, USA
Game theory has been applied to a growing list of practical problems, from antitrust analysis to monetary policy; from the design of auction institutions to the structuring of incentives within firms; from patent races to dispute resolution. The purpose of Game Theory and Business Applications is to show how game theory can be used to model and analyze business decisions. The contents of this revised edition contain a wide variety of business functions - from accounting to operations, from marketing to strategy to organizational design. In addition, specific application areas include market competition, law and economics, bargaining and dispute resolution, and competitive bidding. All of these applications involve competitive decision settings, specifically situations where a number of economic agents in pursuit of their own self-interests and in accordance with the institutional "rules of the game" take actions that together affect all of their fortunes. As this volume demonstrates, game theory provides a compelling guide for analyzing business decisions and strategies.
This book deals with critical infrastructure safety analysis based on reliability modelling of multistate ageing system. It shows how changes of the operation process as well as climate-weather changes in the operating area of the critical infrastructure do influence the safety parameters of its assets. Building upon previous authors' research, the book formulates an integrated modeling approach where the multistate critical infrastructure safety model is combined with semi-Markov models for its operation process and for the climate-weather change process. This approach is shown to be successful in determining basic critical infrastructure safety, risk and resilience indicators, regardless of the number of assets and the number of their safety states. Besides the theory, the book reports on a successful application to the safety analysis of a real critical infrastructure, such as a port oil terminal. All in all, this book proposes a comprehensive and timely review of cutting-edge mathematical methods for safety identification, prediction and evaluation of critical infrastructures. It demonstrates that these methods can be applied in practice for analyzing safety of critical infrastructure under time-varying operation and climate-weather change processes.
The results presented here (including the assessment of a new tool - inhibitory trees) offer valuable tools for researchers in the areas of data mining, knowledge discovery, and machine learning, especially those whose work involves decision tables with many-valued decisions. The authors consider various examples of problems and corresponding decision tables with many-valued decisions, discuss the difference between decision and inhibitory trees and rules, and develop tools for their analysis and design. Applications include the study of totally optimal (optimal in relation to a number of criteria simultaneously) decision and inhibitory trees and rules; the comparison of greedy heuristics for tree and rule construction as single-criterion and bi-criteria optimization algorithms; and the development of a restricted multi-pruning approach used in classification and knowledge representation. |
You may like...
The Art of Strategy - A Game Theorist's…
Avinash K. Dixit, Barry J. Nalebuff
Paperback
R461
Discovery Miles 4 610
Application of Gaming in New Media…
Pratika Mishra, Swati Oberoi Dham
Hardcover
R5,330
Discovery Miles 53 300
Problem Solving and Uncertainty Modeling…
Pratiksha Saxena, Dipti Singh, …
Hardcover
R5,687
Discovery Miles 56 870
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,132
Discovery Miles 21 320
The Oxford Handbook of the Economics of…
Yann Bramoulle, Andrea Galeotti, …
Hardcover
R5,455
Discovery Miles 54 550
Transnational Cooperation - An…
Clint Peinhardt, Todd Sandler
Hardcover
R3,579
Discovery Miles 35 790
|